心电图
相关tags:
[外文]:electrocardiogram,ECG,EKG从体表记录到的心肌电激动的图形。心脏内有一组特殊分化的心肌纤维,它们具有自律性,即无需任何外来刺激或神经激动便可自动地按时发出有节奏的激动,由此产生心脏的规律收缩,心肌的规律电活动,产生微弱的电流传布全身,在身体不同部位置放电极,并连接到心电图记录仪,便可把这变动着的电位差记录成曲线,这就是心电图(ECG或EKG)。心电图是诊断一些心脏病,尤其是心肌梗死的重要实验手段。对各种心律失常不但能作出正确诊断、有时是唯一诊断手段,且能帮助理解其异常机制;对心房、心室肥大,心肌疾病、心包炎,全身疾病累及心脏,药物及电解质紊乱,尤其是钾离子对心脏的影响,以及起搏器的工作状态等均为重要的实验检查方法。但必须了解有器质性心脏病的患者可以有正常心电图,而正常人可以有非特异性的心电图异常,因此必须结合临床所见,才能对心电图作出判断。心电图的原理心电图代表整个心脏电激动的综合过程,以一个个心肌细胞的电激动为基础,心肌激动时细胞内发生电传变化。心肌细胞在静息状态下细胞膜外带正电荷,膜内带同等数量的负电荷,心肌细胞在静息状态保持着细胞膜内外的电位差,这称为极化状态。若以微电极插入细胞内,可录得一个负电位,称为跨膜静息电位,静息电位的形成主要是由于细胞膜对离子的通透性不同,膜内外各种离子主要是K+、Na+的浓度存在很大差别,细胞内k+浓度较细胞外约高20~30倍,而细胞外Na+浓度高于细胞内10~20倍。细胞膜对K+的通透性较高,于是一部分K+顺着浓度梯度外流至膜外,增加了膜外正电荷膜内的有机负离子(主要是蛋白质大分子)有随K+外流的倾向,但因分子大,不能通过膜而被阻滞于膜的内表面。膜外正电的排斥作用和膜内负电的吸引作用,使K+的继续外流受阻而达到平衡时,在膜的两侧便形成极化状态。不同类型的心肌纤维,静息电位不同;快反应纤维,如心室肌为-80~-90mV,慢反应纤维,如窦房结则仅-40~-70mV。当心肌细胞受到刺激(或自发地)而兴奋时,细胞膜内外的电位迅速变化。细胞膜内外的电位差在瞬间消失,细胞内的电位由-90mV迅速变为0mV,乃至+20~+30mV。也就是说极化状态消失,这过程称为除极过程。以心室肌为例,膜电位从静息时的-80~-90mV降至-60~-70mV的阈电位水平,即迅速开始除极。随后细胞内又逐渐恢复其负电位,这过程称为复极。由除极至复极,膜内电位由负变正及又回至静息电位的一系列电位变化称为跨膜动作电位。可画成一条曲线,分成为5个时相。图1及表1示心室肌的动作电位与经膜离子流及体表心电图的关系。1、2及3位相是代谢过程,此阶段膜内电位恢复到-90mV,这一过程称为复极,但此时膜内外离子分布尚未恢复到静息状态水平,最后钠—钾泵的转移作用使内外各种离子又恢复到静息状态。在4倍相非自律性细胞稳定于静息状态水平,其动作电位呈水平线;而具有自律性的心肌细胞Ca2+慢通道开放,Ca2+稳定地内流,使膜电位逐渐移向正电位水平,其动作电位呈向上的斜线,这又称4位相自发性除极,当达到阈电位时,便激发Ca2+慢通道开放,Ca2+迅速内流而致0位相除极。此即心脏自律性的机制,由于窦房结的4位相相除极速度最快,故正常人窦房结发放冲动激动心脏(图2)。根据动作电位的形态和电生理特点,心肌细胞可分为两大类:快反应细胞与慢反应细胞(表2)。在静息状态下细胞膜外任何两点间电位都相等,没有电位差,当心肌细胞甲侧受到刺激开始除极时,膜外带负电荷邻接的未除极部分仍带正电荷,前者称为电穴,后者称为电源,合称电偶。电穴与电源间形成电位差,产生电流,电流不断地由电源流向电穴,随后电源部分也开始除极而变成它前方尚未除极部分的电穴;这个程序如此扩展,直至整个细胞及心脏完全除极。除极过程可看成一组电偶沿着细胞膜不断向前移动,其电源(+)在前,电穴(-)在后,除极完毕后,整个细胞呈极化状态逆转,膜内带正电荷,膜外带负电荷,继之复极化。复极过程首先从除极的部分开始,先复极部分膜外获得阳离子,这使该处的电位高于前面尚未复极的部分,于是形成一组电穴在前,电源在后的电偶,这组电偶不断前进,直至整个心肌细胞复极完毕(图3)。人体的体液中含有电解质,具有导电性能,因此人体也是一种容积导体,这样在人体内及体表均有电流自心电偶的正极流入负极,形成一个心电场。可通过心电偶中心的垂直于电偶轴的零电位面把心电场分为正、负电位区(图4)。心电场在人体表面分布的电位就是体表电位。心电图机将此体表电位的电信号放大及按心脏激动的时间顺序记录下来,即为心电图。探查电极面对除极电偶的正极则录出正波,面对负极录出负波(图3)。电极越靠近心电偶轴,则电位的绝对值越高,波形越大。每一次心脏搏动场包括收缩和舒张,称为一个心动周期,相应的心电活动包括除极和复极,成为一个心电周期。心电向量与心电图正常心脏激动发源于右心房上部,上腔静脉入口处的窦房结,激动通过传导系统依次传递至心房、心室各部,使之除极和复极。心脏是一个立体脑器,其各部位的电激动的传导有方向性,且其量的大小不同,这称为向量。在同一瞬间,心肌内有许多驶向各个方向的电偶,向量综合法用平行四边形的对角线代表一个瞬间的综合心电向量,在一个心电周期中,瞬间综合心电向量在不断变动,这样形成一个向量环:心房除极和心室除极分别拼成P向量环及QRS向量环;心室复极构成T向量环。这种立体的向量图(VCG)称为空间心电向量,其在额面、矢状面及水平面的投影,构成平面心电向量图,临床应用较少。平面心电向量图在各心电图导联轴上的投影便构成心电图(图5),后者在临床广为应用。心电图描记方法在体表任何两处安放电极板,用导线接到心电图机的正负两极,即形成导联,可借以记录人体两处的心电电位差。常规用12个导联。标准导联又称双极导联(图6),由W.爱因托芬于1905~1906年首创,在三个肢体上安置电极,并假设这三点在同一平面上形成一个等边三角形,而心脏产生的综合电力是一个位于此等边三角形中心的电偶。单极肢导是威尔逊于1930~1940年代所创,即把三个肢体互相连通构成中心电端,在肢体通向中心电端间加一个5000Ω的电阻,中心电端电位接近于零,因此被看作无干电极,探查电极分别置各肢体形成单极肢导。但由于所描记波幅太小,故戈德伯格又将其改良成加压单极肢体导联(图7),即描记某一肢体的单极导联心电图时,将该肢体与中心电端的连接截断,这样其电压高出50%。威尔逊所创单极心前导联(图8)是将中心电端与电流计的阴极相连,探查电极置胸前各位置(图9)。具体各导联的连接见表3。心电图记录为印有间距1mm的纵横细线的小方格;其横向距离代表时间,一般记录纸速为每秒25mm,故每小格为0.04秒,纵向距离代表电压。常规投照标准电压1mV=10mm(图10)特殊需要时纸速可调至每秒50、100或200mm。电压1mV=20或5mm。正常心电图正常心电图由一系列波组成。典型的心电图包括下述各波。各波需要测量时间、电压以及观察形态和方向及各波之间的相互关系。心电图正常值见图11。(1)P波。为心房除极波,在Ⅰ、Ⅱ、aVF导直立,aVR导倒置,电压1导P波可呈双向,总高度(2)Ta波。心房复极波,方向与P波相反,振幅较低,常重合在P-R段、QRS波或ST段中而不易确定。(3)QRS波。心室除极波。第一个向下波称Q波,第一个向上波称R波,完全向下的波称QS波。QRS波时间为0.06~0.10秒,在基本向上的QRS波群中,q波1导5导揊+S+S揊1导主波向下,呈rS型,R/S5导多呈qR型,R/S>1,也就是说自V1至V5,R波应逐渐增高,S波变浅。q波异常见于心肌梗死,也见于心肌疾病。QRS波增宽见于心室内传导阻滞,电压增高者见于心室肥大。(4)P-R间期代表心房激动至心室激动开始前的一般时间为0.12~0.20秒,在少数正常人心率慢时可长至0.24秒或更长。P-R间期延长见于房室传导障碍。(5)ST段心室复极波,是在S波之后的一段等电线,一般不高出等电线0.1mV,不降低0.05mV,在V1、V3导可升高达0.3mV。(6)T波。心室复极波,与QR3波主波方向一致,在以R波为主的导联T波直立,电压高于1/10R波。心肌损伤、缺血,药物及电解质紊乱均可引起ST-T波异常。(7)U波。与T波同极向,产生原因不明,有人认为是乳头肌复极或是普尔基涅氏纤维复极波,它与心动周期的超常兴奋期同时。U波倒置是异常表现,见于心肌缺血、左室负荷过重或电解质改变等。心电轴:即额面QRS向量综合而成的一个总的向量,它代表整个心室除极向量在额面上的方向及大小;成人正常0°→+90°。+90°→+270°称右偏,0°→-90°称左偏。心率可按下列公式计算:小儿正常心电图与成人明显不同,年龄愈小差异愈大,表现在:(1)心率较成人快,②各间期及各波时间较成人短,③各波幅尤其是心前导联振幅较高,④右室占优势,心电轴右偏,⑤T波在不同年龄期有一定改变:如婴儿心率可达130次/分,P波0.04~0.07秒,QRS波最大值为0.08秒,I及aVL导S波深,aVR导R波>0.5mV,V5>3.5mV,V1导R/S>1,电轴右偏可达+195°,T波低平。在1~5岁以后各值逐渐接近成人。心电图的临床应用心电图可用于以下情况。(1)心房肥大。实际名称应为P波异常,除见于心房扩张、肥厚外,也见于心房传导障碍、心房肌损伤以及心房高压。主要表现为P波电压增高,时间延长,左心房异常时P>0.11秒,呈双峰波,V1导联负向P波深×宽≥-0.03毫米·秒。右房异常时P波高尖≥0.25mV(图12)。(2)心室肥大。由于心脏表面积增大或心肌纤维增粗,致使除极面及心电向量环较正常时大,因此QRS电压增高,时间可有轻度延长。由于左心室解剖位置在左后下方,当其肥大时电力向左后增大,因此R或R>2.5mV,R或R与S揊或S揋之和≥4.0mV(男)或3.5mV(女),RⅠ>1.5mV。当向左上方增大为主时,RⅠ+SⅢ≥2~5mV,RaVL≥1.2mV;当向左下增大为主时RⅡ、Ⅲ、aVL≥2.0mV。在左心室容量负荷过重时,左心室以扩大为主,常不伴有ST-T改变;在压力负荷过重时,左室肥厚,除QRS电压增高外,常伴有ST-T-U波改变,即ST段下移,T波倒置或伴有U波倒置,称为左心室劳损(图13)。除此以外尚有一些次要诊断标准,由于各作者的标准不同,也有用各项标准记分的方法。用各方法诊断左心室肥大的敏感性约40~60%,特异性85~90%。青少年、运动员或胸壁很薄的正常人,有时R+S揊可高达6.0mV,但属正常现象。凡属这种不能确诊者,常诊为左室高电压,需结合临床综合分析。右心室解剖位置居于右前上方,因此当其肥大时,心室综合向量较正常更向右前突出。成人的诊断标准是:右心室压力负荷过重时V1~V2导R波>1.0mV,R揊+S>1.2mV,V1导R/S>1,严重者呈qR型,RaVL≥0.5mV。右心室容量负荷过重时,右心室以扩大为主,V1~V2导呈rSR'或rSr'型,且可伴有Ⅱ、Ⅲ、aVF导ST-T改变(图12)。两者心电图改变并无绝对区分;QRS电轴右偏≥+110°。但由于解剖上右室壁厚度仅为左室壁的1/3,因此右室轻度肥大时,其向右前向量仍小于左室向左向量,其结果是QRS综合向量可无明显变化,故上述标准对右室肥厚诊断的敏感性较左室为低,尤其在左右双室肥厚时,心电图可仅表现为一侧心室肥大,或因电力对消而出现正常心电图。(3)冠状动脉供血不足时有缺血损伤型改变。心电图对心肌梗死有诊断意义(见冠状动脉性心脏病及心肌梗死)。(4)心肌疾病、心包炎。心电图有一定诊断价值(见心肌疾病及心包炎(急性))。(5)心律失常。心电图对诊断心律失常有重要甚至决定性的意义(见心律失常)。(6)药物作用及电解质紊乱。药物作用及电解质紊乱皆可引起ST-T改变甚或QRS波改变,严重者造成各种心律失常。特征性改变有洋地黄类引起的ST段鱼钩状下垂,QT间期缩短;奎尼丁引起的QRS波增宽,高U波;乙胺碘呋酮引起的QT延长以及P-R间期延长、QRS波增宽。这几种药物中毒都可以引起严重室性心律失常,如室性心动过速。低钾血症可引起高U波或U波倒置以及TU融合;高钾血症可引起高尖T波、QRS波增宽和(或)P波消失;低钙血症引起ST段平坦延长。(7)具有病因诊断意义的心电图。一般心电图只能说明疾病造成的病理生理改变,只有少数几种心电图改变具有病因诊断意义。如右位心,为心脏位于右侧胸腔的先天畸形,好像正常心脏的镜影。心电图表现Ⅰ、aVL导P-QRS-T波皆为负向,V1~V5导R波逐渐缩小,S波逐渐增深。此外,约25%急性肺原性心脏病患者可出现有诊断意义的改变:如Ⅲ导异常Q波,Ⅰ导S波增深,这称为QⅢSⅠ型,又可有其他急性右心扩张(如V1导rSR'形)的改变,持续数日消失。但右心导联T波倒置可持续多日。心电图负荷试验有一些问题用常规心电图不能解决,因此又发展出多种新的方法和技术。约25~40%心绞痛病人于休息时心电图是正常的。运动负荷或药物干预可使心率和(或)血压升高,增加心肌耗氧量,但冠状动脉有固定狭窄时不能相应增加冠状循环血流量,于是可以诱发出心肌缺血的心电图以及其他指征的改变。心肌氧的供需平衡是保?ahref='http://www.baiven.com/baike/220/260259.html'target='_blank'style='color:#136ec2'>中脑喙δ苷5奶跫募〉难豕┯χ饕丛从诠谧炊鲅鳌P募《远鲅难跎闳≡谡G榭鱿乱汛镒畲笾担锤叽?0%左右,故心肌需氧增加时不能从提高摄氧率来实现,只能从提高冠脉血流来实现,而冠脉血流的增加主要通过冠脉口径的扩大来达到。剧烈运动时心输出量可增加数倍至10倍,冠脉血流可相应地增加5倍。因此在冠脉轻度甚至中重度狭窄时,休息心电图或一般运动量时的心电图可以正常,只在较强度的运动时心肌需氧明显增加,有固定狭窄病变的冠状动脉不能相应地扩张以增加冠脉血流,心肌氧供需失衡,才出现心电图缺血改变和(或)心绞痛。心电图负荷试验有以下几种。(1)分级运动测验应用活动平板或自行车功量计做分级运动测验。令受试者在活动平板上行走,活动平板的转速和坡度可以增减,目前有多种方案,以R.A.布鲁斯的方案应用最广。踏车运动测验是在可以测定功量的脚踏车功量计上进行,功量以千克·米(kg·M)计算。方案是:男性患者功量从300kg·M开始,3分钟增量一次,每次递增300kg·M;女性由200kg·M开始,3分钟增量一次,每次递增200kg·M。运动过程中监测并记录心电图及血压变化。运动量按年龄推算,分为极量及次极量两种。终止运动的指标是:出现典型心绞痛;心电图出现阳性结果;心率达到预期最大心率的85~90%(预期心率约等于195~200次/分减年龄);血压下降或剧升;下肢无力不能继续运动或头晕步态不稳。阳性判断标准为:运动中和运动后心电图出现ST段水平型或下垂型下降≥0.2mV,(也有用ST下降0.1mV做标准)或U波倒置;出现严重室性心律失常;出现心绞痛、低血压或二尖瓣关闭不全的杂音或异常第四心音等。运动试验的指征为:成人胸痛(尤其症状不典型者)的诊断;对确诊为冠心病患者,评价其病变程度及预后;评价心脏手术及药物的疗效;评价心肌梗死后病人的预后及如何进行康复训练。运动试验的禁忌症为:急性心肌梗死或梗死前状态;不稳定心绞痛;心功能不全;严重主动脉瓣狭窄、严重高血压或严重心律失常。此运动试验的结果不能简单用来区别有无冠心病,因为对低冠心病发病率人群(即冠心病发病风险因素少的人群)来说,运动测验阳性多为假阳性,而对高发病率的人群则阳性结果意义大。能用来区分哪些病人有高风险性需及时行冠状动脉造影检查及搭桥手术或是适应内科保守治疗。(2)二级梯运动试验。令受试者在二级9英寸高的阶梯上往返运动,A.M.马斯特氏标准化运动是按性别、年龄及体重规定一定速度,运动1分钟或3分钟。非标准化运动是要病人运动到接近已知发作心绞痛的运动量,在运动前后记录心电图。此方法目前已多被分级运动测验所代替。(3)等长运动试验。是一种静态运动,令患者用最大力量的一半或80%紧握握力计1分钟,使血压及心率中度升高,从而诱发心绞痛。可用于检测不能行走的患者,但敏感性低。(4)其他负荷试验。包括心电图异丙基肾上腺素测验、葡萄糖测验、饱餐测验、冰水激发、缺氧测验以及心房内起搏测验等。观察指标与分级运动测验相似,由于准确性、安全度以及设备条件等原因,临床应用受到一定限制。动态心电图又称霍尔特氏监测,1961年N.J.霍尔特首先报告,是一种可以携带的在活动情况下长时间记录心电图的方法。主要价值在于可将病人的主观诉述给予客观证实,尤其对有阵发性发作心律失常或心脏症状的患者。主要用以监测如冠心病、肥厚性心肌病、二尖瓣脱垂及长QT综合症等患者有无严重心律失常发作,亦用于监测间歇性心律失常发作(如预激综合征)、原因不明的晕厥以及病态窦房结合征患者,在安装起搏器的患者可用以了解起搏器的功能状态。可用于判断心律失常药物的疗效。用于观察体力活动对心律及心脏供血的影响。监测仪器分两部分。一为记录仪,为能佩带身上的轻便的盒式或盘式磁带录相仪,一般记录24小时心电图,并能标明时间,患者可在有症状时打上标号,同时记录24小时活动及病情日志。一为分析仪,可将磁带以30~120倍实时的速度回放出图像,可用人力分析,分析仪的电子计算机亦能根据要求识别异常的图形,并总结24小时(或48小时)各种异常心律的发作频率并自动打出报告。高频心电图于1952年由P.H.朗纳首先报道,将普通心电图机的频率相应增高到800~3000Hz,扫描速度加快到200~500mm/秒,放大倍数增加到1mV=50~100mm,以检出被普通心电图滤掉的高频成分(超过100Hz以上)。此种成分表现为快速、细小的扭结或切迹,在左心前导联V4、V5、V6以及三个“最大肢导”上多见。在冠心病、心肌扩大以及心肌病患者此种高频成分的数目比正常人多。此法临床应用不广,可用以协助诊断冠心病。以V4~V5以及三个最大肢导的切迹数超过3个为异常指标,则诊断冠心病的阳性率约为67~90%,但正常人与患者之间的切迹数有重叠。心电体表标测是用多个胸部导联记录心电变化,图形经计算机处理按等电位点联成线,绘成P波、q波、R波、S波等若干个同步的等电位线图(图14),也可做ST段标测。目前方法并未统一,根据需要胸前后要有30~100个等距离的导联连至中心电端,以毫秒为单位进行分析,从而可取得更多的信息。主要用于确定及追踪心肌梗死以及心肌缺血范围的大小,了解异位心律的起搏部位,预激综合征的类型以及观察药物的作用等。但本方法设备复杂,耗时较多,临床上尚未广泛应用。