数学乐园 数学家祖冲之
Posted
篇首语:好人的天生欲望是知识。本文由小常识网(cha138.com)小编为大家整理,主要介绍了数学乐园 数学家祖冲之相关的知识,希望对你有一定的参考价值。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
相关参考
俄国诗人莱蒙托夫也是一十数学爱好者,他在服役时,有一次给周围的军官做了一个数学游戏。 他让一个军官先想好一个数,不要告诉别人,然后
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一
数学竞赛中出了10道题,每答对1题得5分,每答错1题或不答扣3分。 问:至少要答对几道题,得分才不低于10分。 答案:设至少答对x题:5x-3*(10-x)>=10,8x>=4
欧拉的惊人成就并不是偶然的。他可以在任何不良的环境中工作,经常抱着孩子在膝上完成论文,也不顾较大的孩子在旁边喧哗。欧拉在28岁时,不幸一支眼睛失明,过了30年以后,他的另一只眼睛也失明了。在他双目
数学,数学我爱你,就像老鼠爱大米。大家知道我为什么喜欢数学呢?因为数学它有魅力,我已被它深深的吸引住了。 今天,我又学会了一个新知识,那就是——加、减法的简便算法。学了加减法的简便算法,我的计算
两根蜡烛,一根较细,一根较粗。 细蜡烛长30厘米,可点3小时。 粗蜡烛长20厘米,可点5小时。 同时点燃这两根蜡烛,几小时后,两根蜡烛一样长? (答案形式:XX小时XX分钟) 答案:1小
丢番都是一个数学家,他生活在公元3世纪的古希腊。在他的墓碑上有着一个谜语方程,它的谜底就是数学家的寿命。墓碑是这样写的: “在这里
一只猫发现离它10步远的前方有一只老鼠在奔跑,猫便紧追。猫的步子大,它跑5步的路程,老鼠要跑9步。但是老鼠的动作频率快,猫跑2步的时间,老鼠能跑3步。 请问:按照这种速度,猫能追得上老鼠吗?如果
小牛、小叶和小陆到数学博士家里做客。数学博士请他们做绕口令游戏。每人抽签,一边读签上的题,一边迅速写下答案。 小牛的题目是:“九百
小舒看电视里做的乐乐球的广告,觉得乐乐球挺有意思,就跟爸爸妈妈说,她想要玩乐乐球。 星期天,爸爸带小舒到玩具店买回了乐乐球。回到家,她急忙打开塑料袋,拿出来玩。可拿出记分卡后,她愣住了。心里想: