文史百科 历史上的数学天才
Posted 测量
篇首语:人若是把一生的光阴虚度,便是抛下黄金未买一物。本文由小常识网(cha138.com)小编为大家整理,主要介绍了文史百科 历史上的数学天才相关的知识,希望对你有一定的参考价值。
高斯
物理学家、数学家卡尔·弗里德里希·高斯
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。
高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。
幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。
1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。
从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。
他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
1792年,15岁的高斯进入Braunschweig学院。
在那里,高斯开始对高等数学作研究。
独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
1795年高斯进入哥廷根大学。
1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。
1855年2月23日清晨,高斯于睡梦中去世。
生平
高斯是一对普通夫妇的儿子。
他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。
在她成为高斯父亲的第二个妻子之前,她从事女佣工作。
他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。
当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。
他曾说,他在麦仙翁堆上学会计算。
能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。
他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。
这一年,高斯9岁。
哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。
当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。
他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。
于是他们从高斯14岁起,便资助其学习与生活。
这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。
18岁时,高斯转入哥廷根大学学习。
在他19岁时,第一个成功的用尺规构造出了规则的17角形。
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。
在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。
此后,他又有两个孩子。
Wilhelmine(1809-1840)和Louis(1809-1810)。
1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。
尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。
高斯墓地:高斯非常信教且保守。
他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。
次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。
他们又有三个孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。
1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。
1839年4月18日,他的母亲在哥廷根逝世,享年95岁。
高斯于1855年2月23日凌晨1点在哥廷根去世。
他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。
贡献
18岁的高斯发现了质数分布定理和最小二乘法。
通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。
在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。
其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
在高斯19岁时,仅用没有刻度的尺规与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。
并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
高斯计算的谷神星轨迹高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。
在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。
在这部著作的第一章,导出了三角形全等定理的概念。
高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。
并用这种方法,发现了谷神星的运行轨迹。
谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。
皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Plaoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。
高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。
奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。
从此高斯名扬天下。
高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。
高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。
在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。
通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。
出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。
高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。
高斯亲自参加野外测量工作。
他白天观测,夜晚计算。
五六年间,经他亲自计算过的大地测量数据,超过100万次。
当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。
在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。
汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。
在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。
日光反射仪由于要解决如何用椭圆在球面上的正形投影理论解决大地测量问题,高斯亦在这段时间从事曲面和投影的理论,这成了微分几何的重要基础。
他独自提出不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类理智,也不能给予人类理智以这种证明。
但他的非欧几何的理论并没有发表,也许是因为对处于同时代的人不能理解对该理论的担忧。
后来相对论证明了宇宙空间实际上是非欧几何的空间,高斯的思想被近100年后的物理学接受了。
当时高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。
高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。
1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。
这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。
为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。
最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。
高斯和韦伯19世纪的30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。
他与韦伯(1804-1891)在电磁学的领域共同工作。
他比韦伯年长27岁,以亦师亦友的身份进行合作。
1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。
这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。
尽管线路才8千米长。
1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。
高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。
他经常提醒他的同事,该同事的结论已经被自己很早的证高斯明,只是因为基础理论的不完备性而没有发表。
批评者说他这样是因为极爱出风头。
实际上高斯只是一部疯狂的打字机,将他的结果都记录起来。
在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。
一般认为,即使这20部笔记,也不是高斯全部的笔记。
下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数字化并置于互联网上。
高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。
著作
1799年:关于代数基本定理的博士论文 (Doktorarbeit uber den Fundamentalsatz der Algebra)
1801年:算术研究 (Disquisitiones Arithmeticae)
1809年:天体运动论 (Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)
1827年:曲面的一般研究 (Disquisitiones generales circa superficies curvas)
1843-1844年:高等大地测量学理论(上) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 1)
1846-1847年:高等大地测量学理论(下) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 2)
[编辑本段]【物理单位】
高斯(Gs,G),非国际通用的磁感应强度单位。
为纪念德国物理学家和数学家高斯而命名。
一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位的稳恒电流时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。
高斯是很小的单位,10000高斯等于1特斯拉(T)。
高斯是常见非法定计量单位,特〔斯拉〕是法定计量单位.
历史名词高斯
即法属科西嘉岛(Corse),中古时期应是被称作高斯(Goth)。
拿破仑即是出生于此,故亦有人称拿破仑为高斯人。
梅里美的《高龙巴》讲的就是高斯人的经典故事。
[本人不擅长做史料研究,只是在观看电影《阿提拉》的时候,对电影里面的“高斯人”产生兴趣,简单地查了点资料,做了点推理,所以这个解释不见得完全正确,但是百度百科这里缺乏这方面的知识,权作补充,希冀行家补正。
——居牖客注]
应用程序
高斯程序(Gaussian),Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件,可以研究:分子能量和结构,过渡态的能量和结构,化学键以及反应能量,分子轨道,偶极矩和多极矩,原子电荷和电势,振动频率,红外和拉曼光谱,NMR,极化率和超极化率,热力学性质,反应路径。
计算可以模拟在气相和溶液中的体系,模拟基态和激发态。
Gaussian 03还可以对周期边界体系进行计算。
Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。
Gaussian 03 是由许多程序相连通的体系,用于执行各种半经验和从头分子轨道(MO)计算。
Gaussian 03 可用来预测气相和液相条件下,分子和化学反应的许多性质,包括:
•分子的能量和结构
•过渡态的能量和结构
•振动频率
•红外和拉曼光谱(包括预共振拉曼)
•热化学性质
•成键和化学反应能量
•化学反应路径
•分子轨道
•原子电荷
•电多极矩
•NMR 屏蔽和磁化系数
•自旋-自旋耦合常数
•振动圆二色性强度
•电子圆二色性强度
•g 张量和超精细光谱的其它张量
•旋光性
•振动-转动耦合
•非谐性的振动分析和振动-转动耦合
•电子亲和能和电离势
•极化和超极化率(静态的和含频的)
高斯程序标志•各向异性超精细耦合常数
•静电势和电子密度
计算可以对体系的基态或激发态执行。
可以预测周期体系的能量,结构和分子轨道。
因此,Gaussian 03 可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。
Gaussian 03 程序设计时考虑到使用者的需要。
所有的标准输入采用自由格式和助记代号,程序自动提供输入数据的合理默认选项,计算结果的输出中含有许多解释性的说明。
程序另外提供许多选项指令让有经验的用户更改默认的选项,并提供用户个人程序连接Gaussian 03的接口。
作者希望他们的努力可以让用户把精力集中于把方法应用到化学问题上和开发新方法上,而不是放在执行计算的技巧上。
相关参考
文森特·多布林是一位年轻的法国士兵,在第二次世界大战中英勇捐躯,但却被誉为数学天才。这是因为他在马其诺防线服役时,写下了不朽的数学手稿。多布林出生于德国的一个犹太人家庭。当反犹浪潮席卷第
2012年1月,正在美国伊利诺伊大学香槟分校数学系读书的20岁沈阳女孩郭萌,被评为“全美数学最优秀女生”。这项评选,在美国每年评选一次,每次只有三四个名额。作为最优秀学生,郭萌
牛顿与阿基米德,高斯,欧拉并称四大数学家.欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变
牛顿与阿基米德,高斯,欧拉并称四大数学家.欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变
牛顿与阿基米德,高斯,欧拉并称四大数学家.欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变
牛顿与阿基米德,高斯,欧拉并称四大数学家.欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变
1,李牧(战国)战国时代,不仅仅是中原诸侯纷乱争霸的英雄史,也是中国北地百姓饱受匈奴人肆虐的血泪史。列国的诸侯在中原战场上打的正欢,匈奴的骑手却在中国北方千里边塞上如入无人之境。伟岸的长城在草原骄子们
1,李牧(战国)战国时代,不仅仅是中原诸侯纷乱争霸的英雄史,也是中国北地百姓饱受匈奴人肆虐的血泪史。列国的诸侯在中原战场上打的正欢,匈奴的骑手却在中国北方千里边塞上如入无人之境。伟岸的长城在草原骄子们
目前中国历史上的十大名将:孙武、吴起、孙膑、白起、韩信、卫青、冉闵、陈庆之、李靖、戚继光。其实这个10大名将也是后人评比出来的,之所以赵云没有在上面的话,我觉得并不是他能力的原因,而是10大名额真的是