渗透系数与渗透率(科研进展:应用于油气分离的渗透膜技术)

Posted

篇首语:没有风暴,船帆只不过是一块破布。本文由小常识网(cha138.com)小编为大家整理,主要介绍了渗透系数与渗透率(科研进展:应用于油气分离的渗透膜技术)相关的知识,希望对你有一定的参考价值。

渗透系数与渗透率(科研进展:应用于油气分离的渗透膜技术)

油中溶解气体分析是变压器状态检测最为常见且可靠的方法,油气分离技术则是溶解气体分析中重要的一环。在油气分离技术中,渗透膜是一种较为新颖且颇具前途的分离技术。相较于传统的油气分离方法,渗透膜技术具有结构简单、体积较小、免于维护等优点,因此该方法是油中溶解气体分析研究的热点之一。

中国科学院电工研究所、中国科学院大学、国家电网安徽省电力有限公司电力科学研究院的研究人员陈图南、马凤翔 等,在2022年第3期《电工技术学报》上撰文,首先对近年来应用于油气分离的高分子渗透膜材料及其结构进行了综述;然后,结合现有研究对几种常见的不同类型的高分子渗透膜进行归纳、总结和对比;最后,在总结当前研究的基础上,提出并讨论高分子渗透膜在变压器油中溶解气体分析领域中未来的发展方向。

渗透膜技术是通过具有选择透过性的渗透膜,在外力推动下对两组或多组溶质进行分离的方法。在变压器的运行过程中,溶解于变压器油中的故障特征气体经自由扩散会到达绝缘油表面,经由渗透膜逸出到达气室中,直至气室内的故障特征气体浓度与油中溶解的故障特征气体浓度达到动态平衡。此时,通过测量气室中气体的浓度即可推断出油中溶解气体的浓度。

在当前的研究与应用中,用于油气分离中较多的渗透膜为非多孔膜,故在此主要对非多孔膜的油气分离机理进行介绍。目前,受到普遍认可的描述非多孔膜的模型是溶解-扩散模型。

溶解-扩散模型的分离机理可以分为以下三步:

(1)上游吸附过程:高压侧或高化学浓度侧的气体溶解进入上游的高分子膜中。

(2)沿分压或浓度梯度扩散过程:气体在渗透膜中具有不同的溶解度及溶解速率,因此在通过高分子膜时,不同的气体会被分离。

(3)下游解吸附过程:在低压侧或低化学浓度侧的气体从高分子膜中解吸附。

溶解-扩散模型的分离机理如图1所示。

图1 溶解-扩散模型示意图

在进行油气分离单元的渗透膜材料选型时,主要需考虑变压器故障特征气体在渗透膜中的渗透系数,以此来选择平衡时间较短、故障特征气体有良好渗透率的渗透膜材料。进一步地,在进行油气分离单元的设计时,也可以通过合理设计渗透膜组件的结构来达到缩短平衡时间的目的。

应用于油气分离的渗透膜性能需求

根据实际的工作场景,对应用于油气分离的渗透膜性能需求通常可以分为如下三个方面:

(1)渗透膜渗透性能相关需求:考虑到油中溶解气体在线监测系统需要及时地对变压器的潜在故障进行反馈,因此需要变压器油故障产物在渗透膜中具有良好的渗透性,能够在相对较短的时间内达到油气平衡。

(2)渗透膜工作环境相关需求:油中溶解气体在线监测系统通常安装于变压器的周边,因此对应用于油气分离的渗透膜组件而言需要具备能够稳定工作于该环境下的性能。

(3)实际工程相关需求:油中溶解气体在线监测系统通常需要长期、连续地工作,所以渗透膜组件还应能够适应长期工作,在较长的工作时间内维持良好的工作性能。

在实际工程应用中,选择应用于油气分离的渗透膜材料需要综合多个方面的考虑。原始的有机高分子通常难以完全满足实际需求,因此需要在应用的过程中对其进行处理。这种处理的方法通常为对高分子聚合物进行改性,也可以通过控制制备工艺或后期处理等方式达到该目的。

应用于油气分离的渗透膜技术现状

在实际实验及工业生产过程中,会选取具有良好物理化学性质的高分子材料作为渗透膜基体,然后通过加工、改性等方法使其具备实际应用场合中所需要的性能。根据目前已有的研究,在变压器油中溶解气体在线监测领域获得广泛重视的油气分离渗透膜材料主要有聚酰亚胺、聚四氟乙烯、Teflon AF2400、聚全氟乙丙烯等,常见的渗透膜组件结构有平板构型与管状构型。

目前应用于油气分离的渗透膜材料中,PI、PTFE、Teflon AF2400、FEP是综合性能较好的四种材料,已经得到了较为广泛的应用。与前述的主流渗透膜材料相比,PES、PDMS、PVDF、PFA等材料由于其本身的缺陷,目前在实际中应用较少。尽管如此,这类材料均具有应用于长期油气分离的潜力,其后续的改性研究值得进一步关注。

除了渗透膜本身的物理化学性质以外,另一个影响渗透膜油气分离性能的关键因素是渗透膜的结构组件。一般来说,将渗透膜、固定渗透膜的支撑材料、间隔物或外壳等组装成为一个完整的单元称为渗透膜组件。在实际的应用中,渗透膜组件的主要构型有平板构型与管状构型两种。其中平板构型又可分为板框式和卷式两种型式。

板框式渗透膜组件由于结构简单、易于制备等特点,是早期研究中通常采用的渗透膜组件构型。卷式渗透膜由于其固有的缺陷,难以应用于长期油气分离。随着电力系统对DGA在线监测的需求不断上升,结构更为灵活、脱气效率更高的中空纤维膜逐渐成为应用于油气分离单元中的主流渗透膜组件构型,同样也成为了高分子渗透膜在DGA领域中的重点研究方向。

本文编自2022年第3期《电工技术学报》,论文标题为“高分子渗透膜在变压器油中溶解气体分析中的应用”,作者为陈图南、马凤翔 等。

相关参考

渗透膜和反渗透膜的区别(渗透膜和反渗透膜的区别)

渗透膜是通过具有选择透过性的渗透膜技术,在外力推动下对两组或多组溶质进行分离的膜。反渗透膜是一种模拟生物半透膜制成的具有一定特性的人工半透膜,是反渗透技术的核心构件。正向渗透是与逆渗透、反渗透相对的方...

渗透膜和反渗透膜的区别(渗透膜和反渗透膜的区别)

渗透膜是通过具有选择透过性的渗透膜技术,在外力推动下对两组或多组溶质进行分离的膜。反渗透膜是一种模拟生物半透膜制成的具有一定特性的人工半透膜,是反渗透技术的核心构件。正向渗透是与逆渗透、反渗透相对的方...

污染ro反渗透膜(必须掌握反渗透技术:RO系统如何运行,RO膜污染又怎么处理?)

更多关注公号:环保水处理(hbscl01)反渗透技术,又叫RO(ReverseOsmosis),主要是利用存在于膜两侧的压力差为动力从而实现膜的分离过滤,是一种非常先进且有效的节能膜分离技术。RO基本原理和优势反渗透膜是实现反渗透技术...

有机溶剂对R0膜的影响(必须掌握反渗透技术:RO系统如何运行,RO膜污染又怎么处理?)

更多关注公号:环保水处理(hbscl01)反渗透技术,又叫RO(ReverseOsmosis),主要是利用存在于膜两侧的压力差为动力从而实现膜的分离过滤,是一种非常先进且有效的节能膜分离技术。RO基本原理和优势反渗透膜是实现反渗透技术...

水处理里的反渗透膜怎么清洗(必须掌握反渗透技术:RO系统如何运行,RO膜污染又怎么处理?)

更多关注公号:环保水处理(hbscl01)反渗透技术,又叫RO(ReverseOsmosis),主要是利用存在于膜两侧的压力差为动力从而实现膜的分离过滤,是一种非常先进且有效的节能膜分离技术。RO基本原理和优势反渗透膜是实现反渗透技术...

混凝土渗透仪使用方法(质子交换膜气体渗透检测方法)

摘要:质子交换膜或聚合物电解质膜(PEM)是一种半透膜,通常由离聚物制成并设计用于传导质子,同时充当电子绝缘体和反应物屏障,例如氧气和氢气。这是它们在结合到质子交换膜燃料电池或质子交换膜电解器的膜电极组件(MEA...

混凝土渗透仪使用方法(质子交换膜气体渗透检测方法)

摘要:质子交换膜或聚合物电解质膜(PEM)是一种半透膜,通常由离聚物制成并设计用于传导质子,同时充当电子绝缘体和反应物屏障,例如氧气和氢气。这是它们在结合到质子交换膜燃料电池或质子交换膜电解器的膜电极组件(MEA...

水处理膜阻垢剂的标准(RO反渗透系统阻垢综合解决方案)

...工作压力:1公斤力/平方厘米=14.223磅/平方英寸=0.1MPaRO反渗透工作原理:当把相同体积的稀溶液和浓液分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂自然地穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶...

渗透与反渗透(微滤、超滤、纳滤、反渗透区别)

...关注公号:环保水处理(hbscl01)微滤、超滤、纳滤、反渗透区别膜处理名称微滤超滤纳滤反渗透膜处理简称MFUFNFRO膜过滤口径0.1μm10nm1nm0.1nm膜的材质聚丙烯中空纤维、聚砜、陶瓷膜聚酰胺聚丙烯酰胺膜类型对称膜非对称膜非对称...

渗透与反渗透(微滤、超滤、纳滤、反渗透区别)

...关注公号:环保水处理(hbscl01)微滤、超滤、纳滤、反渗透区别膜处理名称微滤超滤纳滤反渗透膜处理简称MFUFNFRO膜过滤口径0.1μm10nm1nm0.1nm膜的材质聚丙烯中空纤维、聚砜、陶瓷膜聚酰胺聚丙烯酰胺膜类型对称膜非对称膜非对称...