氢气纯化装置(氢云报告:浅谈氢气提纯方法的选取)
Posted
篇首语:好好学习,天天向上。本文由小常识网(cha138.com)小编为大家整理,主要介绍了氢气纯化装置(氢云报告:浅谈氢气提纯方法的选取)相关的知识,希望对你有一定的参考价值。
氢气纯化装置(氢云报告:浅谈氢气提纯方法的选取)
氢气无色、无味、无毒,燃烧热值高,达到142.35kJ/g,且燃烧无碳排放。氢气燃烧生成水,水电解又可以生产氢气。随着气候变暖、大气污染等问题日益严重,全球能源结构调整及能源效率提高面临着更高的挑战。氢能作为高效、清洁的二次能源,在能源市场上优势突出,对推动能源生产与消费的意义重大。
氢气来源广泛,不同方法制取的原料气所含杂质种类、氢气纯度和制氢成本不同;氢气的利用形式多样,但不同应用场合对氢气纯度和杂质含量有显著差异,因此根据原料气和产品气的条件和指标,选取技术可靠、经济性好的提纯方法至关重要。本文综述了不同来源含氢原料气的基本情况,介绍了不同应用场合对氢气纯度、杂质含量的基本要求,对比分析了氢气分离提纯的常用方法。
1、氢气的主要来源
目前主要制氢方法有煤气化制氢、天然气制氢、甲醇制氢、工业副产氢和电解水制氢等。各种方法得到的含氢原料气的纯度、杂质种类和成本如表1所示,其中以一步电解水得到的含氢原料气纯度最高,制氢成本也相对较高,适合为用氢量相对较小但对氢气纯度、杂质含量要求苛刻的行业提供氢源。以煤、天然气、甲醇、石脑油等为原料制得氢气成本相对较低,但是原料气中氢气含量较低,需进行提纯处理,工艺流程相对复杂,可为用氢量大的产业提供氢源。
表1常见含氢气源基本情况
2、不同应用场合对氢的要求
氢气既是化工原料也是能源载体。目前,氢的四大单一用途(包括纯氢和混合氢)分别是:炼油(33%)、合成氨(27%)、合成甲醇(11%)和直接还原铁矿石生产钢铁(3%)。其他用途的纯氢虽然占比较小,但应用领域很广泛,包括冶金、航天、电子、玻璃、精细化工、能源等。氢气作为一种清洁的新能源载体可用于燃料电池,将太阳能、风能等可再生能源储存,未来市场前景广阔。不同应用场合对氢气纯度、杂质含量要求有显著差异,如表2所示。
表2 不同应用场合对氢气纯度和杂质含量的基本要求及主要氢气来源
在合成氨、甲醇的生产中,为防止催化剂中毒,保证产品质量,原料气中硫化物等毒物必须预先去除,使杂质含量降低至符合要求。
炼厂用氢的纯度和压力对加氢处理单元的设计和操作有着显著的影响。通常炼厂基于经济性、操作灵活性、可靠性以及易于未来流程拓展的原则来选取合适的氢气分离技术。
在冶金和陶瓷工业,氢气可用于有色金属(钛、钨、钼等)的还原制取,防止金属或陶瓷(TiO2、Al2O3、BeO等)材料在高温煅烧时被烧结或被氧化;在玻璃工业,氢气可防止锡槽中的液态锡被氧化而增加锡耗;在半导体工业,氢气可用于晶体和衬底的制备、氧化、退火、外延、干蚀刻以及化学气相沉积工序。由于氢气与上述行业中产品直接接触,氢气的纯度和杂质含量普遍要求较高,如表2所示。目前大多数厂家采用电解水制氢或外购高纯氢等方式来满足生产需求。很多对氢气纯度和杂质要求极为苛刻的厂家还配置了氢气纯化器进一步纯化氢气。
近年来,燃料电池得到了长足的发展,尤其是以质子交换膜燃料电池(PEMFC)为主的交通和便携电源领域。PEMFC的电解质为高分子膜,主要燃料为氢气,具有功率密度高、低温启动、结构紧凑等优势。国内外很多研究表明,氢气或空气中微量杂质可能会严重毒害PEMFC的膜电极组件,例如硫化物、CO与催化剂铂的吸附性比氢更强,优先于氢气占据催化剂表面的活性位点且不易脱除,造成催化剂中毒,使燃料电池的寿命和性能大幅度降低。Ahluwalia等对体积分数0.25%以内的CO2杂质气体对燃料电池的影响进行了研究,发现CO2会与H2发生变换反应生成CO,进而影响电池性能。N2、Ar、He虽然不会对催化剂铂产生直接影响,但是由于它们对氢气的稀释作用,影响氢气的扩散,进而影响到催化效率,使燃料电池的性能下降。PEMFC对氢气中部分杂质(CO、硫化物等)的要求苛刻,但对氢气纯度的要求明显低于高纯氢(99.999%)。通常纯氢(99.99%)经过额外的净化过程,将CO、CO2等杂质降至所需要的水平后,就能满足燃料电池的用氢需求。
3、氢气的主要提纯方法
采用不同方法制得的含氢原料气中氢气纯度普遍较低,为满足特定应用对氢气纯度和杂质含量的要求,还需经提纯处理。从富氢气体中去除杂质得到5N以上(≥99.999%)纯度的氢气大致可分为三个处理过程。第一步是对粗氢进行预处理,去除对后续分离过程有害的特定污染物,使其转化为易于分离的物质,传统的物理或化学吸收法、化学反应法是实现这一目的的有效方法;第二步是去除主要杂质和次要杂质,得到一个可接受的纯氢水平(5N及以下),常用的分离方法有变压吸附(PSA)分离、低温分离、聚合物膜分离等;第三步是采用低温吸附、钯膜分离等方法进一步提纯氢气到要求的指标(5N以上)。
3.1 纯度5N及以下氢气的常用提纯方法
表3总结了从富氢气体中提纯氢气的方法(PSA、低温分离、聚合物膜分离)。目前工业上大多采用PSA法提纯氢气至99%以上。
表3 富氢气体常用提纯方法
PSA分离技术的基本原理是基于在不同压力下,吸附剂对不同气体的选择性吸附能力不同,利用压力的周期性变化进行吸附和解吸,从而实现气体的分离和提纯。根据原料气中不同杂质种类,吸附剂可选取分子筛、活性炭、活性氧化铝等。PSA法具有灵活性高,技术成熟,装置可靠等优势。近年来,PSA技术逐渐完善,通过增加均压次数,可降低能量消耗;采用抽空工艺,氢气的回收率可提高到95%~97%;采用多床层多种吸附剂装填的方式,省去了某些气源的预处理或后处理的工序;采用快速变压吸附(RPSA),可实现小规模集成撬装;可通过与变温吸附、膜分离、低温分离等技术的结合,实现复杂多样的分离任务。
深冷分离法是利用原料气中不同组分的相对挥发度的差异来实现氢气的分离和提纯。与甲烷和其他轻烃相比,氢具有较高的相对挥发度。随着温度的降低,碳氢化合物、二氧化碳、一氧化碳、氮气等气体先于氢气凝结分离出来。该工艺通常用于氢烃的分离。深冷分离法的成本高,对不同原料成分处理的灵活性差,有时需要补充制冷,被认为不如PSA或膜分离工艺可靠且还需对原料进行预处理,通常适用于含氢量比较低且需要回收分离多种产品的提纯处理,例如重整氢。
聚合物膜分离法基本原理是根据不同气体在聚合物薄膜上的渗透速率的差异而实现分离的目的。目前最常见的聚合物膜有醋酸纤维(CA)、聚砜(PSF)、聚醚砜(PES)、聚酰亚胺(PI)、聚醚酰亚胺(PEI)等,如表4所示。与深冷、变压吸附法相比,聚合物膜分离装置具有操作简单、能耗低、占地面积小、连续运行等独特优势。由于膜组件在冷凝液的存在下分离效果变差,因此聚合物膜分离技术不适合直接处理饱和的气体原料。
表4 氢气分离用的商业聚合物膜主要特性
3.2 纯度5N以上氢气的常用提纯方法
由于受限于吸附平衡和相平衡,常用的氢气分离技术手段无法提纯氢气至6N及以上,10-6级杂质脱除较为困难。目前,生产纯度5N以上氢气的方法主要有低温及变温吸附法、金属钯膜扩散法和金属氢化物分离法等。
金属钯膜扩散法的原理是基于钯膜对氢气有良好的选择透过性。在300~500℃下,氢吸附在钯膜上,并电离为质子和电子。在浓度梯度的作用下,氢质子扩散至低氢分压侧,并在钯膜表面重新耦合为氢分子,如图1所示。由于钯复合膜对氢气有独特的透氢选择性,其几乎可以去除氢气外所有杂质,甚至包括稀有气体(如He、Ar等),分离得到的氢气纯度高(>99.9999%),回收率高(>99%)。为防止钯膜的中毒失效,钯膜提纯技术对原料气中的CO、H2O、O2等杂质含量要求较高,需预先脱除。此外,钯复合膜的生产成本较高,透氢速度低,无法实现大规模工业化的应用。
图1 金属钯膜的透氢原理
低温及变温吸附法的原理是基于吸附剂(硅胶、活性炭、分子筛等)对杂质气体的吸附量随温度的变化而变化的特性,通常采用低温(液氮温度下)或常温吸附、升温脱附的方法实现氢气的分离提纯。由于变温吸附法是利用外部提供的热量进行升温脱附,吸附剂再生彻底,氢气回收率高,通常适用于微量或难解吸杂质的脱除。采用深冷吸附的方法可脱除氢气中的H2O、N2、O2、CO2、CO等杂质气体,并将氢气的纯度提纯至5N以上。变温吸附存在周期长、能耗高等缺点,通常用于碳捕集过程。
金属氢化物法是利用储氢合金可逆吸放氢的能力提纯氢气。在降温升压的条件下,氢分子在储氢合金(稀土系、钛系、镁系等合金)的催化作用下分解为氢原子,然后经扩散、相变、化合反应等过程生成金属氢化物,杂质气体吸附于金属颗粒之间。当升温减压时,杂质气体从金属颗粒间排出后,氢气从晶格里出来,纯度可高达99.9999%。金属氢化物法同时具有提纯和存储的功能,具有安全可靠、操作简单,材料价格相对较低,产出氢气纯度高等优势,可代替钯膜纯化法制备半导体用氢气,但是金属合金存在容易粉化,释放氢气时需要较高的温度,且氢气释放缓慢,易与杂质气体发生反应等问题。
4、结语
氢气作为传统石油化工生产等的重要原料,其用量较大,大多数氢源来自于煤制氢、天然气制氢或甲醇制氢等,由于很多行业对氢气纯度和杂质的要求不是很高,原料气采用成熟的物理化学吸收法、变压吸附法、聚合物膜分离法或深冷分离法等技术进行分离提纯,即可满足用氢质量需求。在冶金、陶瓷、电子、玻璃、航天航空等许多领域中,虽然用氢量相对较小,但是对氢气纯度和杂质含量要求相对较高,多数氢气还需精提纯处理。发展迅速的氢燃料电池产业虽然对氢气纯度要求不高,但是对个别杂质的要求较为苛刻,通常氢气也需进行精提纯处理。
综上,不同应用场合对氢气纯度、杂质含量需求不同,在选用氢气的纯化方法时,根据原料气和产品气的规格和条件,选取经济适用的一种或多种方法进行提纯。
来源:《天然气化工》,华电电力科学研究院有限公司北京分院,李佩佩
免责声明:氢云链致力于好文推送,尊重原创,版权归属原作者所有,如涉及作品版权烦请联系我们予以删除!
相关参考
液氨制氢装置(氢云观察:氢气储运新方法?三聚环保发力液氨制氢)
近日,三聚环保发布公告称,公司近日与福州大学化肥催化剂国家工程研究中心(下称“福大化肥催化剂中心”)签署了《战略合作意向书》,双方一致同意在氨的高值高效利用等方面建立战略合作伙伴关系并达成本协议。 根据...
摘要:氢气压缩机在石油化工汽油加氢精制、煤化工甲醇合成气输送等工艺中占有重要地位,一旦氢气压缩机出现故障,会导致装置停车甚至气体泄漏、着火、爆炸等事故,造成重大经济损失。本文将输送介质为氢气的活塞式压...
氢气装置(兖矿国宏变压吸附装置试车成功 出氢气纯度高达99997%)
...,点击右上角加\'关注\'】“变压吸附装置试车成功,出氢气纯度高达99.997%!”在兖矿国宏化工有限责任公司(注:兖矿集团持有该公司99.58%股份,下称“兖矿国宏”)1月10日的三届四次“双代会”上,公司党委书记、执行董事陈爱...
氢气制作原料是什么(中国石化:我国炼厂首次生产出“五九”高纯氢气)
...从中国石化获悉,拥有中国石化自主知识产权的首套高纯氢气生产示范装置近日在高桥石化成功投产。该装置以低成本的炼油装置副产氢气为原料,生产燃料电池车用高品质氢气,国内首次将炼厂副产氢气提纯至99.999%,远高于99...
本文章由湖南贝哲斯信息咨询有限公司研究发布,转载请注明来源。追求节能减排、低碳环保的道路上,氢能凭借其自身优异的性能成为全球关注和侧重发展的领域。如何保证充足的氢能来源,是全球推进氢能社会的关键所在,...
氢气纯化器(「政策」2000辆氢车 50艘氢船 30座氢站《辽宁省氢能产业发展规划(2021-2025年)》发布)
近日,《辽宁省氢能产业发展规划(2021-2025年)》发布,到2025年,全省氢能产业实现产值600亿元,培育10家左右具有核心竞争力和影响力的知名企业,建成国内顶尖、世界一流的氢能产业研发与创新基地,国内领先的燃料电池发动...
杭州氢气发生器(全球及中国台式氢气发生器行业研究及十四五规划分析报告)
...息咨询市场调研公司最近发布-《2022-2028全球与中国台式氢气发生器市场调研报告》内容摘要本文同时着重分析台式氢气发生器行业竞争格局,包括全球市场主要厂商竞争格局和中国本土市场主要厂商竞争格局,重点分析全球主...
氢气计量表氢气计量表(专题报告:氢气成本能降到几何?——加氢站与汇总篇)
概述⚫加氢站成本高昂制约发展,补贴政策可缓解建设之难近年来我国加氢站基础设施发展提速。截止到2019年11月,我国加氢站保有量为49座。广东(15座)、上海(8座)、江苏(4座)、湖北(4座)四个地区的加氢站数量在国...
...用铁(反应太慢)。(2)不用盐酸(盐酸具有挥发性,氢气不纯),不用浓硫酸和硝酸(它们不能产生氢气)2,实验装置(1)发生装置:固液不加热型。(2)收集装置:排水法或向下排空气法3,制备步骤(1)连接装置并检查...
氢气管道什么颜色(谈氢色变?火力发电厂氢冷发电机和制氢、储氢装置防火防爆要点)
...发电机和制氢、储氢装置运行与维护的小伙伴深有体会。氢气属于易燃易爆气体,氢气泄漏易造成火灾爆炸事故,今天小编给大伙分享火力发电厂氢冷发电机和制氢、储氢装置的防火防爆安全知识干货,在火电厂工作的小伙伴一...