数显表使用说明书(大牛总结的MySQL锁优化,写得太好了)

Posted

篇首语:亦余心之所善兮,虽九死其犹未悔。本文由小常识网(cha138.com)小编为大家整理,主要介绍了数显表使用说明书(大牛总结的MySQL锁优化,写得太好了)相关的知识,希望对你有一定的参考价值。

数显表使用说明书(大牛总结的MySQL锁优化,写得太好了)

【51CTO.com原创稿件】随着 IT 技术的飞速发展,各种技术层出不穷,让人眼花缭乱。尽管技术在不断更新换代,但是有些技术依旧被一代代 IT 人使用至今。



图片来自 Pexels

MySQL 就是其中之一,它经历了多个版本迭代。数据库锁是 MySQL 数据引擎的一部分,今天我们就一起来学习 MySQL 的数据库锁和它的优化。

MySQL 锁分类

当多个事务或者进程访问同一个资源的时候,为了保证数据的一致性,就需要用到锁机制。

从锁定资源的角度来看,MySQL 中的锁分为:

  • 表级锁
  • 行级锁
  • 页面锁

表级锁:对整张表加锁。开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。

行级锁:对某行记录加锁。开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。

在实际开发过程中,主要会使用到表级锁和行级锁两种。既然锁是针对资源的,那么这些资源就是数据,在 MySQL 提供插件式存储引擎对数据进行存储。

插件式存储引擎的好处是,开发人员可以根据需要选择适合的存储引擎。

在众多的存储引擎中,有两种引擎被比较多的使用,他们分别是:

  • MyISAM 存储引擎,它不支持事务、表锁设计,支持全文索引,主要面向一些在线分析处理(OLAP)数据库应用。说白了主要就是查询数据,对数据的插入,更新操作比较少。
  • InnoDB 存储引擎,它支持事务,其设计目标主要面向在线事务处理(OLTP)的应用。

其特点是行锁设计、支持外键,并支持类似于 Oracle 的非锁定读,即默认读取操作不会产生锁。

简单来说,就是对数据的插入,更新操作比较多。从 MySQL 数据库 5.5.8 版本开始,InnoDB 存储引擎是默认的存储引擎。

上面两种存储引擎在处理多进程数据操作的时候是如何表现的,就是我们接下来要讨论的问题。

为了让整个描述更加清晰,我们将表级锁和行级锁以及 MyISAM,InnoDB 存储引擎,就形成了一个 2*2 的象限。



2*2 表行锁,MyISAM,InnoDB 示意图

由于 MyISAM 存储引擎不支持行级锁,实际上后面讨论的问题会围绕三个象限的讨论展开。

从内容上来看,InnoDB 作为使用最多的存储引擎遇到的问题和值得注意的地方较多,也是本文的重点。

MyISAM 存储引擎和表级锁

首先,来看第一象限的内容:



2*2 表行锁,MyISAM,InnoDB 示意图-第一象限

MyISAM 存储引擎支持表级锁,并且支持两种锁模式:

  • 对 MyISAM 表的读操作(共享锁),不会阻塞其他进程对同一表的读请求,但会阻塞对其的写请求。当读锁释放后,才会执行其他进程的写操作。
  • 对 MyISAM 表的写操作(排他锁),会阻塞其他进程对同一表的读写操作,当该锁释放后,才会执行其他进程的读写操作。

MyISAM 优化建议

在使用 MyISAM 存储引擎时。执行 SQL 语句,会自动为 SELECT 语句加上共享锁,为 UDI(更新,删除,插入)操作加上排他锁。

由于这个特性在多进程并发插入同一张表的时候,就会因为排他锁而进行等待。

因此可以通过配置 concurrent_insert 系统变量,来控制其并发的插入行为。

①concurrent_insert=0 时,不允许并发插入。

②concurrent_insert=1 时,如果 MyISAM 表中没有空洞(即表中没有被删除的行),允许一个进程读表时,另一个进程向表的尾部插入记录(MySQL 默认设置)。

注:空洞是行记录被删除以后,只是被标记为“已删除”其存储空间没有被回收,也就是说没有被物理删除。由另外一个进程,异步对这个数据进行删除。

因为空间长度问题,删除以后的物理空间不能被新的记录所使用,从而形成了空洞。

③concurrent_insert=2 时,无论 MyISAM 表中有没有空洞,都允许在表尾并发插入记录。

如果在数据插入的时候,没有并发删除操作的话,可以尝试把 concurrent_insert 设置为 1。

反之,在数据插入的时候有删除操作且量较大时,也就是会产生“空洞”的时候,就需要把 concurrent_insert 设置为 2。

另外,当一个进程请求某个 MyISAM 表的读锁,另一个进程也请求同一表的写锁。

即使读请求先到达,写请求后到达,写请求也会插到读请求之前。因为 MySQL 的默认设置认为,写请求比读请求重要。

我们可以通过 low_priority_updates 来调节读写行为的优先级:

  • 数据库以读为主时,要优先保证查询性能时,可通过 low_priority_updates=1 设置读优先级高于写优先级。
  • 数据库以写为主时,则不用设置 low_priority_updates 参数。

InnoDB 存储引擎和表级锁

再来看看第二象限的内容:



2*2 表行锁,MyISAM,InnoDB 示意图-第二象限

InnoDB 存储引擎表锁。当没有对数据表中的索引数据进行查询时,会执行表锁操作。

上面是 InnoDB 实现行锁,同时它也可以实现表锁。其方式就是意向锁(Intention Locks)。

这里介绍两种意向锁:

  • 意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前,必须先取得该表的 IS 锁。
  • 意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前,必须先取得该表的 IX 锁。

注:意向共享锁和意向排他锁是数据库主动加的,不需要我们手动处理。对于 UPDATE、DELETE 和 INSERT 语句,InnoDB 会自动给数据集加排他锁。

InnoDB表锁的实现方式:假设有一个表 test2,有两个字段分别是 id 和 name。

没有设置主键同时也没有设置任何索引(index)如下:



InnoDB 表锁实现方式图

InnoDB 存储引擎和行级锁

第四象限我们使用的比较多,讨论的内容也相对多些:



2*2 表行锁,MyISAM,InnoDB 示意图-第四象限

InnoDB 存储引擎行锁,当数据查询时针对索引数据进行时,会使用行级锁。

共享锁(S):当一个事务读取一条记录的时候,不会阻塞其他事务对同一记录的读请求,但会阻塞对其的写请求。当读锁释放后,才会执行其他事务的写操作。

例如:select … lock in share mode

排他锁(X):当一个事务对一条记录进行写操作时,会阻塞其他事务对同一表的读写操作,当该锁释放后,才会执行其他事务的读写操作。

例如:select … for update

行锁的实现方式:假设有一个表 test1,有两个字段分别是 id 和 name。

id 作为主键同时也是 table 的索引(index)如下:



InnoDB 行锁实现方式图

在高并发的情况下,多个事务同时请求更新数据,由于资源被占用等待事务增多。

如此,会造成性能问题,可以通过 innodb_lock_wait_timeout 来解决。innodb_lock_wait_timeout 是事务等待获取资源的最长时间,单位为秒。如果超过时间还未分配到资源,则会返回应用失败。

四种锁的兼容情况:



共享锁,排他锁,意向共享锁,意向排他锁兼容图例

如果一个事务请求的锁模式与当前的锁兼容, InnoDB 就将请求的锁授予该事务;反之, 如果两者不兼容,该事务就要等待锁释放。

间隙锁

前面谈到行锁是针对一条记录进行加锁。当对一个范围内的记录加锁的时候,我们称之为间隙锁。

当使用范围条件索引数据时,InnoDB 会对符合条件的数据索引项加锁。对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB 也会对这个“间隙”加锁,这就是间隙锁。间隙锁和行锁合称(Next-Key锁)。

如果表中只有 11 条记录,其 id 的值分别是 1,2,...,10,11 下面的 SQL:

Select * from table_gapwhere id > 10 for update;

这是一个范围条件的检索,InnoDB 不仅会对符合条件的 id 值为 10 的记录加锁,会对 id 大于 10 的“间隙”加锁,即使大于 10 的记录不存在,例如 12,13。

InnoDB 使用间隙锁的目的:

  • 一方面是为了防止幻读。对于上例,如果不使用间隙锁,其他事务插入了 id 大于 10 的任何记录,本事务再次执行 select 语句,就会发生幻读。
  • 另一方面,也是为了满足恢复和复制的需要。



间隙锁图

死锁

两个事务都需要获得对方持有的排他锁才能继续完成任务,这种互相等待对方释放资源的情况就是死锁。



死锁图

检测死锁:InnoDB 存储引擎能检测到死锁的循环依赖并立即返回一个错误。

死锁恢复:死锁发生以后,只有部分或完全回滚其中一个事务,才能打破死锁。

InnoDB 方法是,将持有最少行级排他锁的事务回滚。在应用程序设计时必须考虑处理死锁,多数情况下重新执行因死锁回滚的事务即可。

避免死锁:

  • 在事务开始时,如果有记录要修改,先使用 SELECT... FOR UPDATE 语句获取锁,即使这些修改语句是在后面执行。
  • 在事务中,如果要更新记录,直接申请排他锁。而不是查询时申请共享锁、更新时再申请排他锁。

这样做会导致,当申请排他锁时,其他事务可能已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。

简单来说,如果你要更新记录要做两步操作,第一步查询,第二步更新。就不要第一步上共享锁,第二部上排他锁了,直接在第一步就上排他锁,抢占先机。

  • 如果事务需要锁定多个表,那么尽量按照相同的顺序使用加锁语句,可以降低产生死锁的机会。
  • 通过 SELECT ... LOCK INSHARE MODE(共享锁)获取行的读锁后,如果当前事务再需要对该记录进行更新操作,则很有可能造成死锁。所以,如果要对行记录进行修改,直接上排他锁。
  • 改变事务隔离级别(事务隔离级别在后面详细说明)。

MySQL 锁定情况的查询

在实际开发中无法避免数据被锁的问题,那么我们可以通过哪些手段来查询锁呢?

表级锁可以通过两个变量的查询:

  • Table_locks_immediate,产生表级锁的次数。
  • Table_locks_waited,数显表级锁而等待的次数。

行级锁可以通过下面几个变量查询:

  • Innodb_row_lock_current_waits,当前正在等待锁定的数量。
  • Innodb_row_lock_time(重要),从系统启动到现在锁定总时长。
  • Innodb_row_lock_time_avg(重要),每次等待所花平均时间。
  • Innodb_row_lock_time_max,从系统启动到现在等待最长的一次花费时间。
  • Innodb_row_lock_waits(重要),从系统启动到现在总共等待的次数。

MySQL 事务隔离级别

前面讲的死锁是因为并发访问数据库造成。当多个事务同时访问数据库,做并发操作的时候会发生以下问题。

脏读(dirty read),一个事务在处理过程中,读取了另外一个事务未提交的数据。未提交的数据称之为脏数据。



脏读例子

不可重复读(non-repeatable read),在事务范围内,多次查询某条记录,每次得到不同的结果。

第一个事务中的两次读取数据之间,由于第二个事务的修改,第一个事务两次读到的数据可能不一样。



不可重复读例子

幻读(phantom read),是事务非独立执行时发生的一种现象。




幻读的例子

在同一时间点,数据库允许多个并发事务,同时对数据进行读写操作,会造成数据不一致性。



四种隔离级别,解决事务并发问题对照图

隔离性就是用来防止这种数据不一致的。事务隔离根据级别不同,从低到高包括:

  • 读未提交(read uncommitted):它是最低的事务隔离级别,一个事务还没提交时,它做的变更就能被别的事务看到。有脏读的可能性。
  • 读提交(read committed):保证一个事物提交后才能被另外一个事务读取。另外一个事务不能读取该事物未提交的数据。可避免脏读的发生,但是可能会造成不可重复读。
  • 可重复读(repeatable read MySQL 默认方式):多次读取同一范围的数据会返回第一次查询的快照,即使其他事务对该数据做了更新修改。事务在执行期间看到的数据前后必须是一致的。
  • 串行化(serializable):是最可靠的事务隔离级别。“写”会加“排他锁”,“读”会加“共享锁”。

当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,所以事务执行是串行的。可避免脏读、不可重复读、幻读。

InnoDB 优化建议

从锁机制的实现方面来说,InnoDB 的行级锁带来的性能损耗可能比表级锁要高一点,但在并发方面的处理能力远远优于 MyISAM 的表级锁。这也是大多数公司的 MySQL 都是使用 InnoDB 模式的原因。

但是,InnoDB 也有脆弱的一面,下面提出几个优化建议供大家参考:

  • 尽可能让数据检索通过索引完成,避免 InnoDB 因为无法通过索引加行锁,而导致升级为表锁的情况。换句话说就是,多用行锁,少用表锁。
  • 加索引的时候尽量准确,避免造成不必要的锁定影响其他查询。
  • 尽量减少给予范围的数据检索(间隙锁),避免因为间隙锁带来的影响,锁定了不该锁定的记录。
  • 尽量控制事务的大小,减少锁定的资源量和锁定时间。
  • 尽量使用较低级别的事务隔离,减少 MySQL 因为事务隔离带来的成本。

总结



MySQL 数据库锁的思维导图

MySQL 的锁主要分为表级锁和行级锁。MyISAM 引擎使用的是表级锁,针对表级的共享锁和排他锁,可以通过 concurrent_insert 和 low_priority_updates 参数来优化。

InnoDB 支持表锁和行锁,根据索引来判断如何选择。行锁有,行共享锁和行排他锁;表锁有,意向共享锁,意向排他锁,表锁是系统自己加上的;锁范围的是间隙锁。遇到死锁,我们如何检测,恢复以及如何避免。

MySQL 有四个事务级别分别是,读未提交,读提交,可重复读,串行化。他们的隔离级别依次升高。

通过隔离级别的设置,可以避免,脏读,不可重复读和幻读的情况。最后,对于使用比较多的 InnoDB 引擎,提出了一些优化建议。

作者:崔皓

简介:十六年开发和架构经验,曾担任过惠普武汉交付中心技术专家,需求分析师,项目经理,后在创业公司担任技术/产品经理。善于学习,乐于分享。目前专注于技术架构与研发管理。

【51CTO原创稿件,合作站点转载请注明原文作者和出处为51CTO.com】

相关参考

氨水过滤器(质谱检测攻略,总结得太好了)

今天给大家汇总整理了更多更全的14大化工产业链图,而且是高清的哦!大家赶快收藏!内容包括:1、化工产业链传导示意图2、石油化工产业链3、精细化工产业链4、氯碱化工循环经济产业链5、煤化工产业链6、天然气化工行业...

数显表怎么设置(BY2011数显微安表使用说明书)

概述BY2011防静电高压数字多功能微安表为直流微安表和交直流微安表两种,直流数字微安表使用于直流系统中。BY2011是在BY2010的基础上克服了高电压的干扰和影响而研发的新一代数字微安表。技术参数电源:9V电池供电量程:0-19...

怎么连接苹果手表(MYSQL数据库的连表操作)

在mysql中,有四种连表操作:内连接左连接右连接全连接首先准备两个表的数据,员工表和部门表,这里的数据主要是做测试,所以两个表并没有搞外键关联员工表(employee):idnamedep_id1张三3002李四3003王五3014赵起3025李九3036何...

手持示波表(技术大牛太强了德州仪器TI-89图形计算器拆机维修和CPU超频)

最近得到一台有故障的德州仪器TI-89图形计算器(由坛友chendanxing赠送),研究了一段时间后修好了。因为之前曾陆续在坛子里发过几个关于德州仪器图形计算器拆机和超频的帖子,所以也把这次的拆机维修和超频的经历总结一...

数显表原理(XMT 数显调节仪使用说明)

XMT数显调节仪使用说明一、概述XM系列数字仪表采用先进事迹的中大规模集成电路,并应用了独特的非线性校正持技术,与传统的XC系列动圈式仪表、普通TD和TE系列模拟式仪表相比,具有精度高、可靠性好、抗振性强、安装方便、读...

数显表接变送器接线(IN5135数显直流电压电流表使用说明书)

1产品特点:流行外观尺寸,全封闭壳体,纯平表面,嵌入式安装,高品质控制芯片,高品质阻容器件,抗干扰佳,性能稳定可靠,电压表多量程设计,方便DIY,低功耗设计,节能省电,四种显示效果供选择,支持传感器信号输...

智能数显表使用说明书(安科瑞PZ多功能电能表说明书)

1.概述PZ系列电能表,采用交流采样技术,可直接或间接测量三相电网中的电流和电压、功率、电能等电参量。既可用于本地显示,又能与工控设备连接,组成测控系统。产品符合企业标准Q31/0114000129C017-2016《PZ系列交流可编程数...

数显表生产欢迎批(DIATEST孔径测量,电子塞规,数显塞规,BMD塞规式孔径量仪使用说明)

...零部件自动化定中心,测量过程不必再孔里探寻拐点采用数显式显示表读值和对测量数据开展后期分析理想选

数显温度调节仪(数字温度面板表使用说明及注意事项)

产品特点:◆流行外观尺寸,全封闭壳体,纯平表面,嵌入式安装◆测量温度范围宽,精度高,多种显示效果可选(红蓝绿)。◆0.56英寸3位LED显示测量的温度值,清晰、直观,不受光线影响。主要技术参数:◇工作电源:DC5V(其它...

数显表c803说明书(「工程技术」高海拔干热河谷沥青混凝土心墙碾压施工技术在土石坝的应用)

  1 工程概况  苏洼龙水电站位于金沙江上游河段四川巴塘县和西藏芒康县的界河上,为金沙江上游水电规划13个梯级电站的第10级,由华电金沙江上游水电开发有限公司投资建设。其主要枢纽建筑物为沥青混凝土心墙堆石...