常用的溶剂是(提升电解液低温性能:环状和链状溶剂应该怎么选?)
Posted
篇首语:非淡泊无以明志,非宁静无以致远。本文由小常识网(cha138.com)小编为大家整理,主要介绍了常用的溶剂是(提升电解液低温性能:环状和链状溶剂应该怎么选?)相关的知识,希望对你有一定的参考价值。
常用的溶剂是(提升电解液低温性能:环状和链状溶剂应该怎么选?)
锂离子电池作为当今最成功的化学储能电池之一,其足迹不仅遍布消费类电子产品,更开疆扩土进入到电动汽车领域。但是性能如此优异的锂离子电池却对温度十分敏感,低温会导致锂离子电池电性能下降,甚至会导致锂离子电池无法使用,低温充电更会导致锂枝晶的产生【1】,为了提高锂离子电池的低温性能,广大的科研工作者提出了多种措施,例如华沙理工大学的Marta Kasprzyk等人提出的非晶态电解液技术,将电解液的使用温度拓展到了-60℃【2】,上海大学夏永姚教授提出的乙酸乙酯基电解液,将特殊材料的电池的使用温度进一步降低到-75℃【3】,当然也并不是所有的学者都将研究目光聚焦到电解液上,宾夕法尼亚大学的Guangsheng Zhang等人【4】就设计一款内置Ni加热片的电池,该电池从-40℃恢复到常温仅仅需要112s,极大的提升了锂离子电池的低温使用的便利性。
锂离子电池低温性能的提升关键在于电解液低温性能的提升,常规的商业锂离子电池电解液在低温下粘度会快速增加,电导率急剧下降,我们以一款常见的商业锂离子电池电解液LB303为例,常温下其离子电导率为10mS/cm左右,但是在-40℃,其电导率就急剧下降到了0.02mS/cm,严重影响了锂离子电池的低温放电性能,因此提升锂离子电池低温性能的关键在于提高电解液的低温性能。
对于如何提升锂离子电池电解液的低温性能,美国威斯康星大学密尔沃基分校的Janak Kafle认为我们并不需要在电解液中添加特殊添加剂,仅仅通过调整电解液溶剂的配比,就可以显著提升电解液的低温性能【6】。Janak Kafle的研究表明环状的碳酸酯类溶剂会降低电解液的低温性能,而直链状溶剂则能够提升电解液的低温性能。
下图为大家展示了一些常见的锂离子电池溶剂的分子结构和一些基本的理化指标,从图中我们可以看到常见的溶剂中EC为环状结构,EC能够帮助在负极形成更佳稳定的SEI膜【6】,因此我们希望在电解液中多加入一些EC,但是EC较高的熔点(38℃)和高粘度的特性会导致EC过多的加入时电解液低温下电导率偏低,影响电解液的低温性能。直链状的溶剂,例如DMC、EMC等具有相对较低的粘度和良好的电化学稳定性,因此为了提升锂离子电池电解液的低温性能,我们通常会采用多种溶剂混和的方式改善电解液的低温性能,例如美国喷气推进实验室的M.C. Smart等【5】通过优化电解液溶剂的配比,将空间电源供应商SAFT的DD尺寸电池(9Ah)的使用温度范围拓展到了-50-40℃(-40℃,C/10的比能量仍然可达95Wh/kg),从而使其能够满足执行火星探测任务的需求。
为了研究不同的溶剂比例对电解液低温性能的影响,美国威斯康星大学密尔沃基分校的Janak Kafle设计了多种配方的电解液(如下表所示,测试电池为NCM111(0.93mAh/cm2)正极/石墨负极扣式电池,测试制度为25℃,1C充满电后,在低温下搁置2h,使得电池达到热平衡后5C放电),从测试结果来看,电池的低温放电容量非常依赖电解液的溶剂配比,当环状溶剂的比例超过40%时,电解液在低温下的放电容量就发生了显著的降低。
下图展示了采用不同EC添加比例电解液的电池在低温下的放电容量,从图中我们能够非常明显的观察到,电池在低温下的放电容量随着环状溶剂EC添加比例的增加而显著降低。
下图展示不同比例的短链状溶剂对于电池低温放电容量的影响(由于在整个实验中EC的添加比例很小,仅为20-30%,因此EC对电池的低温性能影响较小,所以放在了一起进行考察),从图中我们能够注意到随着短链状溶剂的增加,电池的低温放电容量出现了显著的提升。这实际上并不符合我们常规的认识,因为DMC和EC的熔点分别时3℃和38℃,并不会显著的降低电解液的熔点,这表明一定还有其他因素影响着电解液的低温性能。
为了分析影响电解液低温性能的关键因素,我们需要重新回到本文的第一张表格之中,我们注意到电解液11#在-20℃下仅仅能够放出电解液12#的80%左右的容量,而这两种电解液唯一的区别在与电解液12#中增加了2%的VC添加剂,而2%的VC添加剂并不会显著的改变电解液的电导率,并且更为重要的是这部分VC在电池化成的过程中就会发生还原分解,因此我们可以推断,导致电解液12#具有更好的低温性能的关键因素是形成了更好的SEI膜。
下表对比了在电解液9、10和12中形成的SEI膜中的C、O、F和P元素的比例,从表中我们能够注意到这几种不同的SEI膜中最大的差别在F元素,在电解液9#中形成的SEI膜的F元素的含量在70%左右,而在电解液10#和12#中形成的SEI膜的F元素含量仅为10%和16%,而我们都知道更多的LiF意味着更小的Li+扩散阻抗,因此也就意味着更好的放电性能。
从上面的分析我们不难发现,矛盾的焦点已经从电解液的低温电导率,转移到了负极的SEI膜组成上来。SEI膜是锂离子电池在化成时,电解液中的组分在负极表面分解产生的多孔结构。SEI膜的孔隙率和密度对于电池的性能有显著的影响,孔隙率太高不能阻止电解液在负极表面的进一步反应,而密度太高则会对Li+在其中的扩散产生显著的阻碍。下表展示了几种不同的电解液形成的SEI膜在不同25℃和-20℃下的阻抗拟合结果,从表中我们注意到温度降低时欧姆阻抗Rs变化相对较小,而Li+在SEI膜中的扩散阻抗R和电荷交换阻抗Rcte则发生非常大的变化,这表明电解液离子电导率的降低并不是导致电池低温性能降低的主要原因,真正导致电池低温性能下降的关键因素在于界面扩散和电荷交换阻抗的增大。
通过上述分析不难看出,电解液的低温电导率对锂离子电池低温性能的影响并没有想象中的大,而负极的SEI膜的成分和结构对于电池的低温性能的影响要重要的多,好的SEI膜应该含有更多的LiF,从而减少Li+在SEI膜中的扩散阻抗。总的来说较多的链状溶剂,例如EMC和DMC,较少的环状溶剂,例如EC能够有效的提高锂离子电池的低温性能,但是为了形成更佳稳定的SEI膜,我们还是需要添加少量的EC和PC。
本文首发于公众号“连线新能源”(ID:NELinked),作者:凭栏眺。如需转载请申请授权并注明来源及作者
相关参考
出品|睿蓝财讯电解液是动力电池的血液,由“锂盐(溶质)、溶剂、添加剂”配制罐装而成,占动力电池成本6%-8%。它是动力电池中离子传输的重要载体,对电池安全性、循环寿命、充放电倍率、高低温性能、能量密度有显著...
出品|睿蓝财讯电解液是动力电池的血液,由“锂盐(溶质)、溶剂、添加剂”配制罐装而成,占动力电池成本6%-8%。它是动力电池中离子传输的重要载体,对电池安全性、循环寿命、充放电倍率、高低温性能、能量密度有显著...
...上的正构烷烃在常温下都是固体。脱蜡的方法很多,目前常用的办法是冷榨脱蜡、溶剂脱蜡和尿素脱蜡。二、丙烷脱沥青这种方法就是用丙烷把渣油中的烃类提取出来,即利用液态丙烷在临界温度附近
...上的正构烷烃在常温下都是固体。脱蜡的方法很多,目前常用的办法是冷榨脱蜡、溶剂脱蜡和尿素脱蜡。二、丙烷脱沥青这种方法就是用丙烷把渣油中的烃类提取出来,即利用液态丙烷在临界温度附近
弱溶剂是水性还是油性(弱溶剂化电解液助力实用高电压锂金属电池)
...介】韩国国立群山大学HyeMinOh,Kyung-KooLee教授团队结合浓盐电解液与弱溶剂化电解液的特点,设计了组分为LIFSI/DEE的弱溶剂化-浓盐电解液,该电解液具有更多的聚集离子对溶剂化结构,很好地提高了正负极的界面稳定性,所制备...
感温油墨(「感温油墨供应」感温变色油墨溶剂的选择和对变色性能的影响)
感温变色油墨感温变色油墨:又称热变色油墨、热敏油墨、温变油墨、示温油墨或感温油墨,是一种能随温度变化而发生颜色变化的特种油墨。金华利进科技生产的感温变色油墨分为:可逆温变消色油墨和可逆温变转色油墨。油...
水性醇酸回流溶剂(洪汇新材防腐乳液:替代醇酸树脂 提升涂料性能)
自从人类社会进入钢铁时代,腐蚀的危害便一直存在。由于其发展过程比较缓慢,容易被人们忽视,造成设备设施的损坏,导致经济损失。有资料统计,我国每年因腐蚀造成的经济损失相当于每年GDP的4%-5%。其实腐蚀的危害不仅...
一、定义1、环氧树脂(EpoxyResin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分子低聚体(Oligomer)。当聚合度n为零时,称之为环氧化合物...
一、定义1、环氧树脂(EpoxyResin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分子低聚体(Oligomer)。当聚合度n为零时,称之为环氧化合物...
一、定义1、环氧树脂(EpoxyResin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分子低聚体(Oligomer)。当聚合度n为零时,称之为环氧化合物...