关于小数的知识和历史

Posted 小数

篇首语:有志者自有千计万计,无志者只感千难万难。本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于小数的知识和历史相关的知识,希望对你有一定的参考价值。

关于小数的知识和历史

一、谁能介绍下小数点的历史呢

历经了一段相当长久的时间,累积了许多人的努力,人们才创造出实物的计数方法。

像现在的十进位法的计数方式,如果从整个人类的历史来看,则要算是相当后期的事了。 不论多大的数目,以十进位法的计数方式,都只需要 0 到 9 的十个数字,便能够轻易地表达出来。

那么,为什么要有小数点呢? 因为将整数放大 2 倍、5 倍、10 倍…所得到的数字都还是整数,所以使用原本的整数表达, 并没有任何的问题;但如果把整数分割成1/2 、1/5 、1/10 …所得到的数字就不一定是整数了, 所以再使用原来的整数,便无法完整地表达,只得再创造出小数以补不足。 因为小数也是用 0 到 9 的十个数字表示,所以必须另外用个符号,也就是小数点符号,标识小数跟整数部分以方便区别。

从前小数点的符号也曾出现各式各样的写法。例如以 1。

234 来说,就至少还有下列三种写法。 1,1234 1丨1234 1○1①2②3③4 后来,阿拉伯数学家花拉子密发明了小数点,解决了上述问题。

关于阿拉伯数学家花拉子密,还有一些趣事: 阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。

“。 而不幸的是,在孩子出生前,这位数学家就去世了。

之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。 如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?。

二、小数点的来历

中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。

第一个将这一概念用文字表达出来的是魏晋时代的刘徽。他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒 、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。

到了宋、元时代,小数概念得到了进一步的普及和更明确的表示。杨辉《日用算法》(1262年)载有两斤换算的口诀:“一求,隔位六二五;二求,退位一二五”,即1/16=0 0625;2/16=0 ر125。

这里的“隔位”“退位”已含有指示小数点位置的意义。 南宋数学家秦九韶则将单位注在表示整数部分个位的筹码之下,例如: —Ⅲ—Ⅱ表示13。

12寸 寸是世界上最早的小数表示法。在欧洲和伊斯兰国家,古巴比伦的六十进制长期以来居于统治地位,一些经典科学著作都是采用六十进制,因此十进制小数的概念迟迟没有发展起来。

15世纪中亚地区的阿尔卡西(?~1429)是中国以外第一个应用小数的人。欧洲数学家直到16世纪才开始考虑小数,其中较突出的是荷兰人斯蒂文(1548~1620),他在《论十进制》(1583年)一书中明确表示法。

例如把5。714记为:5◎7①1②4③或5,7\'1\'\'4\'\'\'。

而第一个把小数表示成今日世界通用的形式的人是德国数学家克拉维斯(1537~1612),他在《星盘》(1593年)一书中开始使用小数点作为整数部分与小数部分之间的分界符。

三、小数的来历关于小数的由来方面的知识

小数,即不带分母的十进分数。

小数的产生有两个前提:一是十进制记数法的使用;二是分数概念的完善。小数的出现标志着十进制记数法从整数扩展到了分数,使分数与整数在形式上获得了统一。

我国对小数的认识在世界上也是最早的。公元3世纪,我国数学家刘徽在注释《九章算术》中处理平方要根问题时就提出了十进小数。

虽然我国对小数的认识远远早于欧洲,但现代数学中所使用的小数的表示法却是从欧洲传入我国的。欧洲关于十进小数的最大贡献者是荷兰工程师斯蒂文(Simon Stevin,1548?1620)。

他从制造利息表中体会到十进小数的优越性,因此他竭力主张把十进小数引进到整个算术运算中去,使十进小数有效地参与记数。 不过,斯蒂文的小数记法并不高明,如139。

654,他写作135⊙6①5②4③,每个数后面圈中的数是用来指明它前面数字位置的,这种表示方法,使小数的形式复杂化,并且给小数的运算带来很大的麻烦。1592年,瑞士数学家布尔基(Jobst Burgi)对此作出较大的改进。

他用一空心小圆圈把整数部分和小数部分隔开,比如把36。548表示为36。

548,这与现代的表示法已极为接近。大约过了一年,德国的克拉维斯,首先用黑点代替了小圆圈。

他在1608年发表的《代数学》中,将他的这一做法公之于世,至此,小数的现代记法才被确立下来。 。

四、小数的由来请问高手

小数的历史: 小数是我国最早提出和使用的。

早在公元三世纪,我国古代数学家刘微在解决一个数学难题时就提出了把整个位以下无法标出名称的部分称为微数。 小数的名称是公元十三世纪我国元代数字家朱世杰提出的。

在十三世纪中我国出现了低一格表示小数的记法。 在西方,小数出现很晚。

直到十六世纪,法国数学家克拉维斯首先用了小数点作为整数部分与小数部分分界的记号。 分数与小数 最早出现的分数叫做“单分数”,它是以“单位”为整体,对单位进行分割后的部分。

早在公元前1700年,古埃及人已经对“单分数”有了完整的认识,并且能用若干“单分数”来表示其他的分子大于1的分数。 人类文明大多发源于大河之畔。

在埃及的尼罗河、巴比伦的底格里斯河和幼发拉底河以及中国的黄河之畔,最早出现了人类文明的曙光。在古代埃及的尼罗河河畔和沼泽地带,盛长着一种水草,埃及人用这种水草造纸,用来记载事物。

用这种水草造的纸被称为“纸草纸”。 1858年,英国学者主亨利·莱因特,把在特贝的废墟上发现的纸草纸修补完善。

它至今仍被珍藏在伦敦的大英博物馆内。这本书直到1877年才被翻译出来。

这是一位名叫艾塞洛尔的德国考古学家费尽心机获得的成果。根据他的译文,人们才知道,这是公元前1650年左右埃及的神官阿梅斯撰写的一部数学著作,总结了当时已为人们所掌握的数学知识。

于是,这本书以其发现者的名字命名,叫做《莱因特的纸草书》。这本书较为完整地记录了当时埃及人对分数认识的成果。

埃及人对单分数的认识比起原始的孤立的分数概念前进了一大步。它使分数不仅能作为一个量的表示形式,而且可作为与自然数学并用于计算的数。

但是,古埃及人把“单分数”作为一切分数的“基本元素”。 除了2/3外,把所有的分子大于2的分数,统统用单分数表示,例如7/8写成1/2+1/4+1/8,5/6写成1/2+1/3。

这样,反而使一个简单的分数复杂化了。 单分数远不是分数的全部。

完整的分数概念是建立在整数之比基础上的,它产生于整数的除法之中。 在我国很早就有合理的分数表示法,在筹算中,除法本身就已经包含了分数的表示法。

我国的《九章算术》是世界上最早的系统叙述分数的著作,比欧洲要早出1400余年。大约在公元三四世纪,印度才开始出现与我国同样的分数表示法。

在《九章算术》“方田章”中,就有关于“约分”、“通分”、“合分”(分数加法)、“减分”(分数减法)、“乘分”(分数乘法)、“经分”(分数除法)、“课分”(分数的大小比较)、“平分”(求分数的平均数)等分数运算法则的记载。 其中约分法与现在一样,先求最大公约数,后用最大公约数分别除分子、分母。

在做除法时,将除数的分子、分母颠倒而与被除数相乘,这在当时来说是很了不起的创造。 小数,即不带分母的十进分数。

小数的产生有两个前提:一是十进制记数法的使用;二是分数概念的完善。 小数的出现标志着十进制记数法从整数扩展到了分数,使分数与整数在形式上获得了统一。

我国对小数的认识在世界上也是最早的。公元3世纪,我国数学家刘徽在注释《九章算术》中处理平方要根问题时就提出了十进小数。

虽然我国对小数的认识远远早于欧洲,但现代数学中所使用的小数的表示法却是从欧洲传入我国的。 欧洲关于十进小数的最大贡献者是荷兰工程师斯蒂文(Simon Stevin,1548—1620)。

他从制造利息表中体会到十进小数的优越性,因此他竭力主张把十进小数引进到整个算术运算中去,使十进小数有效地参与记数。不过,斯蒂文的小数记法并不高明,如139。

654,他写作135⊙6①5②4③,每个数后面圈中的数是用来指明它前面数字位置的,这种表示方法,使小数的形式复杂化,并且给小数的运算带来很大的麻烦。1592年,瑞士数学家布尔基(Jobst Burgi)对此作出较大的改进。

他用一空心小圆圈把整数部分和小数部分隔开,比如把36。 548表示为36。

548,这与现代的表示法已极为接近。大约过了一年,德国的克拉维斯,首先用黑点代替了小圆圈。

他在1608年发表的《代数学》中,将他的这一做法公之于世,至此,小数的现代记法才被确立下来。 。

五、【数学的发展历史古今中外】

数学知识伴随着人类文明的产生而起源,并率先在几个文明古国开始了漫长的原始积累过程,人类的祖先为我们留下了珍贵的、可供研究的原始资料,最著名的古埃及象形文字纸草书和巴比伦楔形文字泥板书,较为集中地反映了古埃及数学和巴比的水平,它们被视为人类早期数学知识积累的代表. 古埃及纸草书,是用尼罗河流域沼泽地水生植物的茎皮压制、粘连成纸草卷,用天然涂料液书写而成的.有两份纸草书直接书写着数学内容.一份叫做“莫斯科纸草”,大约出自公元前1850年左右,它包括25个数学问题.这份纸草书于1893年被俄国人戈兰尼采夫买得,也称之为“戈兰尼采夫纸草”,现藏莫斯科美术博物馆.另一份叫做“莱因特纸草”,大约成书于公元前1650年左右,开头写有:“获知一切奥秘的指南”的字样,接着是作者阿默士从更早的文献中抄下来的85个数学问题.这份纸草书于1858年被格兰人莱因特购得,后为博物馆收藏.这两份草书是我们研究古埃及数学的重要资料,其内容丰富,记述了古埃及的记数法、整数四则运算、单位分数的独特用法、试位法、求几何图形的面积、体积问题,以及数学在生产、生活初中中的应用问题. 古巴比伦泥板书,是用截面呈三角形的利器作笔,在将干未干的胶泥板上刻写而成的,由于字体为楔形笔划,故称之为楔形文字泥板,从19世纪前期至今,相继出土了这种泥板有50万块之多.它们分别属于公元前2100年苏美尔文化末期,公元前1790年至公元前1600年间汉莫拉比时代和公元前600年至公元300年间新巴比伦帝国及随后的波斯、塞流西得时代.其中,大约有300至400块是数学泥板,数学泥板中又以数表居多,据信这些数学表是用来运算和解题的.这些古老的泥板,现在散藏于世界各地许多博物馆,并且被一一编号,成为我们研究巴比伦数学最可靠的资料.巴比伦数学从整体上讲比古埃及数学高明,古巴比伦人采用60进位制记数法,并计算出倒数表、平方表、立方表、平方根表和立方根表,其中2的平方根近似为1.414213.巴比伦的代数有相当水平,他们用语言文字叙述方程问题及其解法,常用特殊的“长”、“宽”、“面积”等字眼表示未知量,除求解二次、三次方程的问题之外,也有一些数论性质的问题.巴比伦的几何似乎没有古埃及的几何那么重要,只是收罗了一些计算简单图形的面积、体积的法则,也许他们只是在解决实际问题时才搞点几何.此外,巴比伦数学中有很明显的商业、农业和天文的应用背景. 我们可以说,在人类早期数学知识积累过程中,由于计数物件的需要,产生了自然数,随着记数法的产生和发展,逐渐形成了运算,导致算术的产生;由于计量实物的需要,产生了简单的几何,随着农业、建筑业、手工业及天文观测的发展,逐渐积累了有关这些的基本性质和相互关系的经验知识,于是几何学萌芽了;由于商业计算、工程计算、天文的需要,在算术计算技巧的基础上,逐渐积累起代数学基本知识.但是,在这个阶段上,直到公元前6世纪,无论如何也找不到我们今天所谓的“理性的数学”,而只是一种初级的“经验的数学”.麻烦采纳,谢谢!。

六、如何写出小数知识的三个有关内容(三年级下册)

人类是动物进化的产物,最初也完全没有数量的概念。

但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。

比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。

"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。

传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。

这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。

古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。

这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。

如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。

一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。

如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。

到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。

按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。

算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。

9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。

这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。

但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。

数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。

不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。

说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。

如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。

随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。

如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。

但罗马教皇凶残而且守旧。他不允许任何使用"0"。

有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。

现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。

如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。

在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。

实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。

数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。

如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。

自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。

为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。

如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。

但是,在数字的发展过程中,一件不愉快的事发。

七、数学历史发展表

一、中国数学的起源与早期发展据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」.在殷墟出土的甲骨文卜辞中有很多记数的文字.从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万.算筹是中国古代的计算工具,而这种计算方法称为筹算.算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍.用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零.算筹为加、减、乘、除等运算建立起良好的条件.筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的.在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例.战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念.战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念.著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等.墨家还给出有穷和无穷的定义.《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等.这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展.此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想. 二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史.秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现.现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前).西汉末年〔公元前一世纪〕编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱.此外,还有较复杂的开方问题和分数运算等.《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕.全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章.主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等.在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同.就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远.它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展.魏晋时期中国数学在理论上有了较大的发展.其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端.三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想.赵爽还提出了用几何方法求解二次方程的新方法.263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术.南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃.出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作.约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题. 公元五世纪,祖冲之、祖暅父子的工。

八、数学的发展历史是什么

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。

古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。

即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。 深圳市卓越文化教育成立于2008年4月,作为深圳中小学课外培训的领导品牌,卓越教育秉承“用心育人,成就学生”的企业使命,创立“小班分层次授课、个性化辅导”的教学模式,深入感知孩子和家长的真正需求,致力于让孩子接受最zui好的教育。

九、小学数学知识点

在网上查就有的

(一)、数和数的运算(20课时)

这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。

1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。

2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。

3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。

4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。

5、精心设计练习,提高综合计算能力(3课时)。

(二)、代数的初步知识(10课时)

本节重点内容应放在掌握简易方程及比和比例的辨析。

1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。

2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。

3、辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。

(三)、应用题(30课时)

这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。

1、简单应用题的分析与整理(3课时)。

2、复合应用题的分析与整理(6课时)。

3、列方程解应用题的分析与整理(5课时)。

4、分数应用题的分析与整理(10课时)。

5、用比例知识解答应用题的分析与整理(3课时)。

6、应用题的综合训练(3课时)。

(四)、量的计量

本节重点放在名数的改写和实际观念上。

1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。

2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。

3、综合训练与应用(1课时)。

(五)、几何初步知识(12课时)

本节重点放在对特征的辨析和对公式的应用上。

1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。

2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。

3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。

4、整体感知、实际应用(1课时)。

(六)、简单的统计(6课时)

本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。

1、求平均数的方法(1课时)。

2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。

3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。

五、复习中应注意的问题

1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。

2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。

3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。

相关参考

高中历史关于法国的知识点

法国大革命意义法国资产阶级革命是采用暴力手段矛头直指国王的权力,法国在这段时期经历着一个史诗式的转变:过往的封建、贵族和宗教特权不断受到自由主义政治组织及上街抗议的民众的冲击,旧的观念逐渐被全新的天赋

涨知识:关于历史上的10条冷知识,颠覆你的认知

1.“风筝”名字的由来。我们大家都知道,风筝在古代被称作纸鸢,还有一种称呼就是“鹞”。直到晚唐时期,人们才开始将其称做“风筝”。当时人们还会别出心裁地在纸鸢上加上哨子或是竹笛,飞上天后被风一吹,能发出

关于三国时期的8个冷知识,知道5个就是大神,你听说过几个

由于《三国演义》的影响力,使得三国历史为很多人所熟知。当然,太熟悉的就不说了,我今天要盘点的是一些鲜为人知的三国冷知识,有哪些错漏的地方,还请批评指正。1、三国初期,由于战乱频繁,魏国和东吴都出现了严

惠州历史知识

1.关于惠州历史早在新石器时代晚期,人类已在惠州一带繁衍生息,从事捕捞、狩猎和原始的农耕,创造了惠州的远古文化。博罗葫芦岭、苏屋岗、何屋岗等贝丘遗址,出土石锛、石斧、石矛和敲砸器,以及大量饰有绳纹、方

关于民国的历史冷知识,知道一半你就厉害了

1、按照《中华民国宪法》规定,中华民国领土依其固有之疆域,但其中并未列明何为固有之疆域。若包括蒙古地方,其面积为1141万8174平方公里,是世界领土面积第二大国(仅次于俄罗斯)。2、世人对少帅的评价

跪求高中历史关于宋代所有知识点经济政治思想文化成就

一、经济:1、精耕细作技术成熟,南宋时江浙地区成为全国经济重心,东、西北得到发展。2、制瓷业享誉世界,涌现一批名瑶(五大窑:定窑、汝窑、哥窑、官窑、钧瑶)。3、商业繁荣,打破市坊界限;商业交换品迅速增

历史高一大题

1.高一历史大题有什么答题方法或者技巧吗历史复习策略与重点在掌握住基础知识的前提下,为了提高思维和解决问题的能力,有必要在第二轮复习期间进行关于历史知识的整合、迁移和运用的训练,大体上有以下几个方面:

许多人一直错误相信着的9个关于欧洲中世纪的知识

中世纪的欧洲或许是世界历史上最神秘的时期之一。从5世纪到15世纪,这段时间间隔很大。在谈论这个时代时,人们想到的是肮脏的人们如何在大街上倒了几桶臭水,以及完全的文盲人口和数不清的战争。这些都是刻在许多

许多人一直错误相信着的9个关于欧洲中世纪的知识

中世纪的欧洲或许是世界历史上最神秘的时期之一。从5世纪到15世纪,这段时间间隔很大。在谈论这个时代时,人们想到的是肮脏的人们如何在大街上倒了几桶臭水,以及完全的文盲人口和数不清的战争。这些都是刻在许多

股票历史成交

1.股票的分时成交明细和历史成交明细怎么看从成交明细分析主力异动分析1、逐笔成交一般显示的数据格式为在几分几秒以多少价格分几笔成交了多少手。在这里我们要注意的是成交手数有时候是带小数点的,这是因为股票