知识大全 奥数题目
Posted 知
篇首语:愿所行皆坦途,愿所求皆如愿。本文由小常识网(cha138.com)小编为大家整理,主要介绍了知识大全 奥数题目相关的知识,希望对你有一定的参考价值。
奥数题目
不多,我能!!!
4、五(1)班原计划抽 的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的 .原计划抽______个同学参加大扫除.
【解】 又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加人数比原计划多 - = .即全班共有2÷ =40(人).
原计划抽40× =8(人)参加大扫除.
5、李刚给军属王奶奶运蜂窝煤,第一次运了全部的 ,第二次运了50块.这时,已运来的恰好是没运来的 .还有_____块蜂窝煤没有运来.
【解】:蜂窝煤的总块数为
50÷( 一 )=50÷ =1200(块),
还有1200×(1一 )一50=700(块)没有运来.
6、老刘和小李合做一件工作,要12天完成。如果让老刘先做8天剩下的工作由小李单做,小李还要14天才能做完。小李单独做这件工作需几天完成?
【解】:两人合作8天后,剩下需合作12-8=4(天)的工作,小李单独做需14-8=6(天)。因此这件工作全由小李单独做需。
6×(12÷4)=18(天)
7、有一批工人进行某项工程,如果能调来8个人,10天就能完成;如果能调来3个人,就要20天才能完成,现在只能调来2个人,那么完成工这项工程需要多少天?
【解】:将1人1天完成的工作量称为1份,那么调来3个人与调来8个人相比,10天少完成(8-3)×10=50(份),这50份还需调来3个人的10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份),调来2人完成这项工程需100÷(2+2)=25(天)
基础班自测题答案
1.两个质数的和是39,求这两个质数的积。
解:和为奇数,两个质数必为一奇一偶,偶质数只有2,
则另一质数为37,乘积为74。
2.从1到100的这100个自然数的乘积的末尾有多少个连续的0?
解:24个(方法同例题)
3.2004个2连续相乘得到的数的个位数字是多少?
解: 规律为2,4,8,6,2,4,8,6
所以2004个2连续相乘的个位数字是6。
4.在面前有一个长方体,它的正面和上面的面积之和为209,如果它的长宽高都是质数,那么这个长方体的体积是多少?
解:设长宽高分别是a,b,c
那么有a(b+c)=209=11×19
因此a=11,b+c=19 由于b,c都是质数,所以b=17,c=2
所以长方体的体积是11×17×2=374
5.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有_______个。
解:枚举法:23,37,53,73,,有4个
6. 三个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除,那么这样的三个自然数的和的最小值是多少?
解:这三个自然数最小是6,10,15(分别是2×3,2×5,3×5)
和的最小值为31。
提高班自测题答案
1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?
解:1+2+……+100=5050
9+18+27+……+99=9×(1+2+……+11)=495
随意1-100中所有不能被9整除的数的和是5050-495=4555
2.从1到100的这100个自然数的乘积的末尾有多少个连续的0?
解:24个(方法同例题)
3.2004个2连续相乘得到的数的个位数字是多少?
解: 规律为2,4,8,6,2,4,8,6
所以2004个2连续相乘的个位数字是6。
4.在面前有一个长方体,它的正面和上面的面积之和为209,如果它的长宽高都是质数,那么这个长方体的体积是多少?
解:设长宽高分别是a,b,c
那么有a(b+c)=209=11×19
因此a=11,b+c=19 由于b,c都是质数,所以b=17,c=2
所以长方体的体积是11×17×2=374
5.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有_______个。
解:枚举法:23,37,53,73,,有4个
6. 三个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除,那么这样的三个自然数的和的最小值是多少?
解:这三个自然数最小是6,10,15(分别是2×3,2×5,3×5)
和的最小值为31。
7 有一个三位数,它等于去掉它的首位数字之后剩下的两位数的七倍与66的和,则符合条件的所有三位数是______.
解: 设这三位数的百位数码为A,去掉首位数后剩下的两位数为x,则有:100A+x=7x+66,得:6x=10OA-66,等式右端应是6的倍数,故A=3或6,x=39或89,符合条件的三位数是339或689.
精英班自测题答案
1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?
解:1+2+……+100=5050
9+18+27+……+99=9×(1+2+……+11)=495
随意1-100中所有不能被9整除的数的和是5050-495=4555
2.从1到100的这100个自然数的乘积的末尾有多少个连续的0?
解:24个(方法同例题)
3.2004个2连续相乘得到的数的个位数字是多少?
解: 规律为2,4,8,6,2,4,8,6
所以2004个2连续相乘的个位数字是6。
4.在面前有一个长方体,它的正面和上面的面积之和为209,如果它的长宽高都是质数,那么这个长方体的体积是多少?
解:设长宽高分别是a,b,c
那么有a(b+c)=209=11×19
因此a=11,b+c=19 由于b,c都是质数,所以b=17,c=2
所以长方体的体积是11×17×2=374
5.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有_______个。
解:枚举法:23,37,53,73,,有4个
6. 三个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除,那么这样的三个自然数的和的最小值是多少?
解:这三个自然数最小是6,10,15(分别是2×3,2×5,3×5)
和的最小值为31。
7 有一个三位数,它等于去掉它的首位数字之后剩下的两位数的七倍与66的和,则符合条件的所有三位数是______.
解: 设这三位数的百位数码为A,去掉首位数后剩下的两位数为x,则有:100A+x=7x+66,得:6x=10OA-66,等式右端应是6的倍数,故A=3或6,x=39或89,符合条件的三位数是339或689.
基础班练习七
1、31.719×1.2798的整数部分是__________.
2、若 ,则 的整数部分是__________________。
3、在 的方框中,填入适当的自然数使得不等式成立。
4、比较下列四个算式的大小:
5、有七个数, 、 、 、 、 是其中的五个,已知从小到大排的第三个数是 ,求从大到小的第三个数。
6、有30个数,1.64, , ,……, , 。如果取每个数的整数部分,并将这些整数相加,那么其和是多少?
7、
答案
1、 答:31.7×1.27 > 40; 32×1.28 <41 所以整数部分取40。
2、 答:
所以整数部分为165。
3、答: 16至34之间的任意自然数
4、答:
5、答: 。提示:
6、答: 因为 ,所以 的整数部分是1,而 的整数部分是2。这样,1.64到 这11个数的整数部分是1,从 到 这19个数的整数部分都是2。因此这些整数相加的和是 。
7、答: 方法同例题
提高班练习七
1、31.719×1.2798的整数部分是__________.
2、若 ,则 的整数部分是__________________。
3、在 的方框中,填入适当的自然数使得不等式成立。
4、比较下列四个算式的大小:
5、有七个数, 、 、 、 、 是其中的五个,已知从小到大排的第三个数是 ,求从大到小的第三个数。
6、有30个数,1.64, , ,……, , 。如果取每个数的整数部分,并将这些整数相加,那么其和是多少?
7、
答案
1、 答:31.7×1.27 > 40; 32×1.28 <41 所以整数部分取40。
2、 答:
所以整数部分为165。
3、答: 16至34之间的任意自然数
4、答:
5、答: 。提示:
6、答: 因为 ,所以 的整数部分是1,而 的整数部分是2。这样,1.64到 这11个数的整数部分是1,从 到 这19个数的整数部分都是2。因此这些整数相加的和是 。
7、答: 方法同例题
精英班练习七
1、31.719×1.2798的整数部分是__________.
2、若 ,则 的整数部分是__________________。
3、在 的方框中,填入适当的自然数使得不等式成立。
4、比较下列四个算式的大小:
5、有七个数, 、 、 、 、 是其中的五个,已知从小到大排的第三个数是 ,求从大到小的第三个数。
6、有30个数,1.64, , ,……, , 。如果取每个数的整数部分,并将这些整数相加,那么其和是多少?
7、
答案
1、 答:31.7×1.27 > 40; 32×1.28 <41 所以整数部分取40。
2、 答:
所以整数部分为165。
3、答: 16至34之间的任意自然数
4、答:
5、答: 。提示:
6、答: 因为 ,所以 的整数部分是1,而 的整数部分是2。这样,1.64到 这11个数的整数部分是1,从 到 这19个数的整数部分都是2。因此这些整数相加的和是 。
7、答:
原式=2〔(1-
=2〔1 〕=
基础班自测题
1、如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?
解:4×4+(1×1+2×2+4×4)×4
=100(平方米)。
2、一个正方体的棱长为4厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.
解:由于本题所给出的正方体棱长为4厘米,从六个面的中心位置各挖去一个棱长为1厘米的正方体,这样得到的玩具中心部分是实体。
原正方体的表面积为:42×6=96(平方厘米).在它的六个面各挖去一个棱长为1厘米的正方体后增加的面积为:12×4×6=24(平方厘米),
这个玩具的表面积为:96+24=120(平方厘米)。
3、如果把上题的条件“4厘米”改换为“3厘米”,那么这个玩具的表面积是多少?
解:如果把本题的条件“4厘米”改换成“3厘米”,那么解法就要发生变化,因为挖去六个小正方体后,大正方体的中心部分即与其主体脱离,这时得到的新玩具是镂空的.把这个玩具分成20部分,8个“角”和12条“梁”,如右图。
每个“角”为棱长1厘米的小正方体,它外露部分的面积为:12×3=3(平方厘米),则8个“角”外露部分的面积为:3×8=24(平方厘米)。
每条“梁”为棱长1厘米的小正方体,它外露部分的面积为:12×4=4(平方厘米),则12条“梁”外露部分的面积为: 4×12=48(平方厘米)。
这个玩具的表面积为:24+48=72(平方厘米)。
4、有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?
解:水池中水面升高部分水的体积就是投入水中的碎石体积.
沉入中、小水池中的碎石的体积分别是:
3×3×0.04=0.36立方米,
2×2×0.11=0.44立方米.
它们的和是:
0.36+0.44=0.8立方米.
把它们都沉入大池里,大池水面升高部分水的体积也应当是0.8立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:
5、如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?
解: 大立方体的表面积是20×20×20×6=2400平方厘米。在角上挖掉一个小正方体后,外面少了3个面,但厘米又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面。所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3,它的体积是3×3×3=27,因此剩余的部分体积是20×20×20-27×3=7919。
6、有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,求这个长方体的体积。
解:如下图可以看出,长方体的正面及上面之和恰等于:
长×(宽+高)=209=11×19
有两种可能:①长=11,宽+高=19. ②长=19,宽+高=11.
宽和高必是一个奇质数与一个偶质数2。
只有19=17+2合乎要求,11=9+2不符合要求.所以长=11,
长方体体积是11×17×2=374.
提高班自测题
1、如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?
解:4×4+(1×1+2×2+4×4)×4
=100(平方米)。
2、一个正方体的棱长为4厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.
解:由于本题所给出的正方体棱长为4厘米,从六个面的中心位置各挖去一个棱长为1厘米的正方体,这样得到的玩具中心部分是实体。
原正方体的表面积为:42×6=96(平方厘米).在它的六个面各挖去一个棱长为1厘米的正方体后增加的面积为:12×4×6=24(平方厘米),
这个玩具的表面积为:96+24=120(平方厘米)。
3、如果把上题的条件“4厘米”改换为“3厘米”,那么这个玩具的表面积是多少?
解:如果把本题的条件“4厘米”改换成“3厘米”,那么解法就要发生变化,因为挖去六个小正方体后,大正方体的中心部分即与其主体脱离,这时得到的新玩具是镂空的.把这个玩具分成20部分,8个“角”和12条“梁”,如右图。
每个“角”为棱长1厘米的小正方体,它外露部分的面积为:12×3=3(平方厘米),则8个“角”外露部分的面积为:3×8=24(平方厘米)。
每条“梁”为棱长1厘米的小正方体,它外露部分的面积为:12×4=4(平方厘米),则12条“梁”外露部分的面积为: 4×12=48(平方厘米)。
这个玩具的表面积为:24+48=72(平方厘米)。
4、有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?
解:水池中水面升高部分水的体积就是投入水中的碎石体积.
沉入中、小水池中的碎石的体积分别是:
3×3×0.04=0.36立方米,
2×2×0.11=0.44立方米.
它们的和是:
0.36+0.44=0.8立方米.
把它们都沉入大池里,大池水面升高部分水的体积也应当是0.8立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:
5、如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?
解: 大立方体的表面积是20×20×20×6=2400平方厘米。在角上挖掉一个小正方体后,外面少了3个面,但厘米又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面。所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3,它的体积是3×3×3=27,因此剩余的部分体积是20×20×20-27×3=7919。
6、有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,求这个长方体的体积。
解:如下图可以看出,长方体的正面及上面之和恰等于:
长×(宽+高)=209=11×19
有两种可能:①长=11,宽+高=19. ②长=19,宽+高=11.
宽和高必是一个奇质数与一个偶质数2。
只有19=17+2合乎要求,11=9+2不符合要求.所以长=11,
长方体体积是11×17×2=374.
精英班自测题
1、如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?
解:4×4+(1×1+2×2+4×4)×4
=100(平方米)。
2、一个正方体的棱长为4厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.
解:由于本题所给出的正方体棱长为4厘米,从六个面的中心位置各挖去一个棱长为1厘米的正方体,这样得到的玩具中心部分是实体。
原正方体的表面积为:42×6=96(平方厘米).在它的六个面各挖去一个棱长为1厘米的正方体后增加的面积为:12×4×6=24(平方厘米),
这个玩具的表面积为:96+24=120(平方厘米)。
3、如果把上题的条件“4厘米”改换为“3厘米”,那么这个玩具的表面积是多少?
解:如果把本题的条件“4厘米”改换成“3厘米”,那么解法就要发生变化,因为挖去六个小正方体后,大正方体的中心部分即与其主体脱离,这时得到的新玩具是镂空的.把这个玩具分成20部分,8个“角”和12条“梁”,如右图。
每个“角”为棱长1厘米的小正方体,它外露部分的面积为:12×3=3(平方厘米),则8个“角”外露部分的面积为:3×8=24(平方厘米)。
每条“梁”为棱长1厘米的小正方体,它外露部分的面积为:12×4=4(平方厘米),则12条“梁”外露部分的面积为: 4×12=48(平方厘米)。
这个玩具的表面积为:24+48=72(平方厘米)。
4、有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?
解:水池中水面升高部分水的体积就是投入水中的碎石体积.
沉入中、小水池中的碎石的体积分别是:
3×3×0.04=0.36立方米,
2×2×0.11=0.44立方米.
它们的和是:
0.36+0.44=0.8立方米.
把它们都沉入大池里,大池水面升高部分水的体积也应当是0.8立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:
5、如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?
解: 大立方体的表面积是20×20×20×6=2400平方厘米。在角上挖掉一个小正方体后,外面少了3个面,但厘米又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面。所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3,它的体积是3×3×3=27,因此剩余的部分体积是20×20×20-27×3=7919。
6、将一个棱长10厘米,表面积涂满红色的正方体切成48个小长方体(每个小长方体的大小完全相同),这些小长方体没有被涂上红色的所有表面的面积之和最小是( )平方厘米,最多是( )平方厘米。
解:①切的刀数越少,没有被涂上红色的表面的面积之和就越小,如右图,最少要切8刀,所以没被涂上红色的面积之和是最小是10×10×8×2=1600(平方厘米)(每切一刀就要出现两个10×10的面)。
②切成48个小长方体,最多要切47刀,如下图,没被涂上红色的面积之和是最多是10×10×47×2=9400平方厘米。
唉,好累.记得多给点分啊!
cwbfjd1,你好哦~
找了好久哪,找到这些给你,希望帮到你哈
1.某班有45人,全班参加暑期培训活动,参加电脑培训的有29人,参加奥数培训的有21人,参加作文培训的有25人,有17人既参加电脑培训又参加作文培训,有15人既参加作文培训又参加奥数培训,有10人既参加奥数培训又参加电脑培训,这三种培训都参加的有多少人?
2.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
3. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那幺小轿车是在上午什么时候追上大轿车的.
4. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
5. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
6. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
7. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
8. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
9. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
10. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
11. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
12. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
13. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
14. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
15. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
16. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
17. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
18. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那幺小轿车是在上午什么时候追上大轿车的.
19. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
20. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
21. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
22. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
23. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
24. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
25. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
26. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
27. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
28. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
29. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
30. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
31. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
32. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
33. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
34. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
35. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
36. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
37. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
38. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
39. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
40. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
41. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
42. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
43. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
44. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
45. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
46. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
47. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
48. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
49. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
50. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
51. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那幺小明在20分钟里比小强少走几米?
52. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
53. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
54. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
55. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
56. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
小学数学应用题综合训练(06)
57. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
58. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
59. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
60. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
61. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
62. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
63. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
64. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
65. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
66. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
小学数学应用题综合训练(07)
67. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,同时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
68. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
69. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
70. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
71. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
72. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
73. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
74. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
望采纳哦。谢谢~
【苹果汁】
整数是 129.6÷(12-1.2)=12
正确的积 1.2×12=14.4
解:设整数为x,则
12x=1.2x+129.6
x=12
正确的积:1.2×12=14.4
1.乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?
2.小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?
3.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。那么甲、乙两地之间的距离是多少千米?
4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。有一个人从乙站出发沿电车线路骑车前往甲站。他出发的时候,恰好有一辆电车到达乙站。在路上他又遇到了10辆迎面开来的电车。到达甲站时,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了多少分钟?
5.甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。问:甲现在离起点多少米?
6.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。问:东西两地的距离是多少千米?
7.李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:骑车人每小时行驶多少千米?
8快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?
9.某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达。问:汽车速度是劳模步行速度的几倍?
奥数题题目
把11块相同的长方体砖拼成一个大长方体。已知每块砖的体积是288立方厘米,求大长方体的表面积。
=====================================================================
要求大长方体的表面积,必须知道它的长、宽和高。我们用a、b、h分别表示小长方体的长、宽、高,显然,a=4h,即h=1/4a,2a=3b即b=2/3a,砖的体积是a*2/3a*1/4a=1/6a3。由1/6a3=288可知,a=12,b=2/3*12=8,h=1/4*12=3。
大长方体的长是12×2=24厘米,宽12厘米,高是8+3=11厘米,大长方体表面积就为24×12×2+24×11×2+12×11×2=1368平方厘米,小长方体的表面积为12×8×2+12×3×2+8×3×2=312平方厘米。
********************************************************************
一个长方体,前面和上面的面积和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。这个长方体的体积和表面积各是多少?
====================================================================
这个长方体长、宽、高,分别为17厘米、11厘米、2厘米。
体积=(17×11×2)立方厘米=374立方厘米
表面积=(17×11+17×2+11×2)平方厘米×2=(187+34+22)平方厘米×2
=486平方厘米。
********************************************************************
六年级奥数题:一个长方体,上面的面积是667cm,右面的面积是69cm,前面的面积是87cm,这个长方体的体积是( )
上面的面积=长×宽=667=29×23
右面的面积=高×宽=69 = 3×23
前面的面积=高×长=87 = 3×29
长=29,
宽=23,
高=3,
体积=29×23×3=2001
=================================================================
不错你有学好数学的决心!好
相关参考
20道五年级下期用的奥数题,题目及答案都要。题目必须简短明了,答案清晰明了,结果也要,拜托各位啦!~~~~1、小学数学奥林匹克决赛)一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便
知识大全 我是一位数学老师,想知道数学出题目要画图有什么软体
我是一位数学老师,想知道数学出题目要画图有什么软体画的如果是基本的长方形、正方形之类的话可以试试办公软体里面的画图工具,里面基本用的都有我是一位六年级的数学老师,急需奥数试题1.乙两地相距6千米,某人
学奥数对初中有影响吗影响不大的,毕竟中高考才是绝大部分同学的升学途径。而中高考的考试范围并不会涉及到奥数的知识,只是正常课程教学范围内的内容如果为了学习奥数影响了课内的学习,反而得不偿失小学不学奥数,
给我12道小学6年级数学奥数题,要题目比较简短的,要有答案和解题过程,谢谢!线上等~1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、2.3箱
求四年级奥数题20道上学而思奥数网:aoshu./求四年级奥数题12道1.如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么这样的四位数最多能有多少个?2.上下
小学奥数怎么越来越难了?确实哦大学生都不一定做的出来小学知识越来越难了!怎么办!好好学习天天向上小学奥数题是否越难越好那就要看学奥数的目的和兴趣了。如果想靠这个怎样怎样,那应该研究研究难题。如果对很有
三年级让孩子学新概念和奥数,孩子能不能接受了??辅导班该怎么选择啊新概念已经可以学了,但是奥数就看孩子喜不喜欢了,毕竟应用的不是很多,万一孩子不喜欢奥数甚至可能会完全的厌烦和恐惧数学,所以奥数要以孩子
六道小学数学奥数题,急!1.乒乓球双打比赛中。两个人在议论。王鹏比李明年轻。张华比他们两个对手年龄都大。王鹏比李强年龄大。李明比张华年龄大。他们四个人谁最大?谁是谁的伙伴。2.两位整数中,十位数字大于
奥数题:运算律128*543227巧算怎么算啊?谢谢3125*275=3000*275+125*275=825000+(125*200+125*75)=825000+25500+(125*70+125
知识大全 弟弟小学五年级,上了奥数班,但是自己的数学成绩却还是中等水平,怎么办
弟弟小学五年级,上了奥数班,但是自己的数学成绩却还是中等水平,怎么办?奥数班只是帮助你的月考之类的,单元测验那些应该就要基础扎实,上课得认真听,课后要认真完成作业请问小学五年级.数学成绩差.学习奥数合