高浓度豆制品废水的处理
Posted 沼气
篇首语:成家后,你要明白,你赚钱的速度不仅要快于你花钱的速度,还要快于父母变老的速度。本文由小常识网(cha138.com)小编为大家整理,主要介绍了高浓度豆制品废水的处理相关的知识,希望对你有一定的参考价值。
1 工艺流程的确定
高浓度废水经酸化水解—厌氧消化后,出水与低浓度废水混合,泵入城市排污管网。具体工艺流程见图1。
高浓度废水在酸化水解池的滞留期为12 h,经水解酸化后的酸化液通过水力筛网筛除未被水解酸化的大颗粒豆制品,然后进入增温计量池,把酸化液增温至38 ℃,再泵入厌氧消化罐。厌氧发酵采用复合式上流厌氧污泥床工艺,中温发酵,水力滞留时间为84 h,容积负荷为4.40kgCOD/(m3·d),COD去除率在95%以上,产沼气达510m3/d,产气率为1.70m3/(m3·d)。厌氧出水经沉淀后进入配水池与稀废水混合,最终排入城市污水干管。
在设计厌氧消化池时,增加了废水回流设施的设置,三相分离器上部的厌氧出水回流至回流罐,与未经处理的高浓度废水混合后再进入厌氧消化罐,这样可以提高废水的pH值,降低进入厌氧消化罐的废水COD浓度,减少对厌氧污泥的局部冲击,防止厌氧池内部酸化反应的存在,提高厌氧消化效率。随着回流比例的调整,可以大大提高厌氧消化罐的耐冲击能力。
2 设计和施工
①由于废水处理设施正好位于原有的池塘上,其地基承载力和土质均匀度都很差,如采用钢筋混凝土结构,由于其自重大,地基处理费用就相当高。厌氧罐和贮气柜设计采用德国引进的Lipp罐体,由于罐体自重轻,基础比较容易处理,费用随之降低。厌氧消化罐高为9 m,直径为7 m,是地上式圆形Lipp罐。由于对厌氧消化罐的径、高比进行了调整,原有的三相分离器就不是很适合。因此,对三相分离器进行了重新设计,采用三层钢结构漏斗式导流板做三相分离器(见图2)。从使用结果看,三相分离效果相当好,厌氧污泥流失量很小,污泥截留效果明显。
③厌氧消化罐采用Lipp技术进行卷制。筒体材料采用不锈钢复合高强度板卷制,在罐顶上部安装有压顶槽钢,采用不锈钢螺栓与筒体之间的定位,不采用焊接方式。筒体制作完成后,进行罐内的金属结构安装。由于罐体为金属结构,罐顶可在罐内金属结构完成后再进行安装,这样给罐内的安装工作带来了极大的便利。厌氧罐内设有布水器,布水器采用枝状布水,隔3m2设有一个布水头,布水较为均匀。三相分离器的安装是罐内金属结构安装的重点,由三个圆锥形正反斗组成,施工要求高、难度大。在施工中充分利用罐顶后施工的特点,三个圆锥斗在外进行拼接,然后到罐内进行安装,降低了施工难度和劳动强度,工程质量也较容易控制,加快了工程进度。安装完成三相分离器和溢流槽后,进行罐顶的安装施工工作。罐体保温材料采用阻燃型的聚苯乙烯泡沫板,外壳采用彩色瓦楞钢板,瓦楞钢板采用特制的定位卡头扁钢定位,安装效果良好。Lipp罐体与钢筋混凝土之间的浇筑采用膨胀混凝土(见图3)。
3 调试运行
①水解酸化:菌种采取自然富集培养,处理水量与厌氧消化进水量相匹配,从10m3/d、20m3/d……逐步增加负荷,1个半月后达到满负荷运转,处理能力为80m3/d。经酸化处理后,出水COD平均从 24 000 mg/L降为16 500 mg/L左右,COD去除率达30%,pH值为5.5。
②厌氧消化:厌氧菌采用厂区的阴沟污泥和杭州四堡污水处理厂的厌氧污泥接种,共接种60%含水率的厌氧污泥30 m3,菌种接入厌氧罐后,加入少量生产废水作为培养基,先进行升温和驯化培养。每天升温1 ℃左右,直至达到设计要求的38±1 ℃。废水处理量从10m3/d开始,COD负荷从0.36kgCOD/(m3·d)逐步增加,1个半月后,进水量达到80 m3/d,COD负荷为4.40kgCOD/(m3·d),出水COD浓度为650 mg/L左右,COD去除率达96%,出水pH值为7.2,产沼气为510m3/d,产气率为1.70m3/(m3·d)。
4 正常运行
处理工程经过近2年的运行,效果稳定,没有出现大的反复,各单元的处理效果(平均值)与沼气产气量见表2。
项目 | 高浓度废水 | 格栅沉砂池 | 酸化水解池 | 厌氧消化罐 | 沉淀池 | 混合池 |
处理水量(m3/d) | 80 | 80 | 80 | 80 | 80 | 330 |
滞留时间(h) |
| 1 | 12 | 84 | 6 | 6 |
pH值 | 5.0 | 5.0 | 5.5 | 7.2 | 7.2 | 6.5 |
SS(mg/L) | 12000 | 11000 | 7200 | 430 | 350 | 501 |
去除率(%) |
| 8.3 | 34.5 | 94 | 18.6 |
|
CODCr(mg/L) | 24000 | 23000 | 16500 | 690 | 650 | 460 |
去除率(%) |
| 4.4 | 28.3 | 95.8 | 4.4 |
|
BOD5(mg/L) | 10800 | 10500 | 8500 | 260 | 260 | 200 |
去除率(%) |
| 2.8 | 19 | 97.5 |
|
|
温度(℃) | 50 | 30 | 28 | 38 | 常温 | 常温 |
沼气(m3/d) |
|
|
| 510 |
|
|
5 结论与经验
②由于采用Lipp技术卷制的罐体其自重很小,罐体结构受力得到大大改善,对地基的处理费用大大降低,特别是在软土地基的地区,工程造价更是显著下降。同时,可以减少大量的日常维护和检修费用,工程使用寿命也大大延长。
③增加厌氧消化罐的回流量可以大大减少对厌氧的冲击,不必为调节pH而多支出药品的费用,可以使运行处于低成本状态,增加了沼气出售的收入(该工程产沼气为510m3/d,若按1.2 元/m3计,则收入为612 元/d)。
相关参考
广东省某厂从事豆制品的生产加工,日排废水20m3,该废水是一种成分复杂、高浓度、环境污染性强的有机废水。处理后的出水要求达到《污水综合排放标准》(GB8978—2002)一级排放标准,废水处理后回
广东省某厂从事豆制品的生产加工,日排废水20m3,该废水是一种成分复杂、高浓度、环境污染性强的有机废水。处理后的出水要求达到《污水综合排放标准》(GB8978—2002)一级排放标准,废水处理后回
广东省某厂从事豆制品的生产加工,日排废水20m3,该废水是一种成分复杂、高浓度、环境污染性强的有机废水。处理后的出水要求达到《污水综合排放标准》(GB8978—2002)一级排放标准,废水处理后回
高浓度竹制品废水达标处理与资源化利用技术适用范围高浓度竹制品废水处理基本原理该工艺采用颗粒污泥膨胀床反应器(EGSB)作为厌氧生物处理段工艺,将原水中难降解CODCr转化为易降解CODCr,为后续高效
高浓度竹制品废水达标处理与资源化利用技术适用范围高浓度竹制品废水处理基本原理该工艺采用颗粒污泥膨胀床反应器(EGSB)作为厌氧生物处理段工艺,将原水中难降解CODCr转化为易降解CODCr,为后续高效
高浓度竹制品废水达标处理与资源化利用技术适用范围高浓度竹制品废水处理基本原理该工艺采用颗粒污泥膨胀床反应器(EGSB)作为厌氧生物处理段工艺,将原水中难降解CODCr转化为易降解CODCr,为后续高效
摘要:对食品(豆制品、乳制品、啤酒)加工过程中产生的中、低浓度有机废水可采用UASB—TF工艺进行处理。当进水COD浓度为1000~3000mg/L时,出水COD浓度可降至50~90mg/L,此工艺对
摘要:对食品(豆制品、乳制品、啤酒)加工过程中产生的中、低浓度有机废水可采用UASB—TF工艺进行处理。当进水COD浓度为1000~3000mg/L时,出水COD浓度可降至50~90mg/L,此工艺对
摘要:对食品(豆制品、乳制品、啤酒)加工过程中产生的中、低浓度有机废水可采用UASB—TF工艺进行处理。当进水COD浓度为1000~3000mg/L时,出水COD浓度可降至50~90mg/L,此工艺对