两段上向流曝气生物滤池脱氮性能的研究
Posted 负荷
篇首语:将相本无种,男儿当自强。本文由小常识网(cha138.com)小编为大家整理,主要介绍了两段上向流曝气生物滤池脱氮性能的研究相关的知识,希望对你有一定的参考价值。
曝气生物滤池(Biological aerated filter,BAF)是 20 世纪80 年代末在欧美发展起来的一种新型生物膜法污水处理工艺,并经历了下流式、下流两段式、上流式、上流两段式曝气生物滤池4 种工艺形式,从单一的结构逐渐发展到综合结构。它将接触氧化工艺和给水快滤池工艺结合在一起,用于去除水中的有机物,也可以通过硝化反硝化达到脱氮效果〔1, 2, 3〕,具备了容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、出水水质好、运行能耗低、运行费用省等诸多优点。
笔者采用两段上向流曝气生物滤池(UBAF)处理城市污水,通过控制运行条件,研究了影响两段 UBAF 脱氮效果的各种因素。
1 试验装置及方法
1.1 试验装置
试验中采用的两段UBAF 工艺流程如图 1 所示。该两段UBAF 中所加填料为陶粒,其性能参数如 表 1 所示。A 段曝气生物滤池主要是对原污水中的少部分氨氮及有机物进行去除,B 段曝气生物滤池主要对剩余COD 及氨氮进行去除。两座曝气生物滤池均采用上向流的运行方式,其结构设计参数完全相同,主体材料为有机玻璃,设计尺寸为D 0.25 m× 2.5 m,填料层高1.50 m。底部设有反冲洗供气管、放空管、穿孔配水管。
图 1 试验装置
1.2 启动方式及挂膜
采用接种挂膜,接种液取自某污水厂原水混合液。以曝气量15~18 L/h 连续闷曝24 h 后将滤柱排空,重复2 次。第3 天小流量进水(有利于硝化菌的生长固定),以滤速0.55 m/h(流量约为16 L/h)、曝气量16 L/h 运行,第5 天滤速增加到0.75 m/h(流量约为21 L/h)、曝气量增至31 L/h。期间对各柱DO 进行检测,出水DO 均在4 mg/L 以上。26 d 后将滤速均增至0.89 m/h,按气水比3∶1 运行,此时对COD、 NH4+-N、浊度均有很好的去除效果,将滤料表面生物膜剥落,镜检发现生物膜中有大量丝状菌,同时有钟虫、线虫、变形虫、轮虫等微型动物。
1.3 试验方法及水质
两反应器从底部进水,气水同向,控制A 段水力负荷为0.81 m/h、气水比为3∶1,研究了相同水力负荷下B 段气水比分别为3∶1、2∶1、1∶1 时,反应器的运行情况。试验中各项水质指标按照文献〔4〕中提供的标准方法进行监测,其中:DO,仪器法;NO3--N,紫外分光光度法;NO2--N,N-(1-萘基)-乙二胺光度法;NH3-N,纳氏试剂光度法;COD,重铬酸钾法; TN,过硫酸钾消解紫外分光光度法。试验用水来自某污水厂进水端配水井,试验期间原水水质见表 2。
2 结果与讨论
2.1 温度对UBAF 脱氮性能的影响
当滤速为0.8 m/h,气水比为2∶1,且系统稳定运行时,分别于7~10、10~20、21~28 ℃条件下考察反应器对氨氮、总氮的去除效果,结果表明:水温是影响微生物生长和生物代谢活性的主要因素。当水温在 7~10 ℃时,UBAF 对NH4+-N、TN 的平均去除率分别为69.19%、25.35%,出水NH4+-N、TN 的质量浓度分别为11.8、40.32 mg/L; 水温10~20 ℃时,UBAF 对 NH4+-N、TN 的平均去除率分别为80.15%、33.68%,出水NH4+-N、TN 的质量浓度分别为7.48、41.09 mg/L;水温为21~28 ℃时,UBAF 对NH4+-N 的去除率明显升高,平均去除率达89.16%,对TN 的平均去除率也有所提高,达38.75%,出水NH4+-N、TN 的质量浓度分别为4.93、37.68 mg/L。这说明,水温对UBAF 去除NH4+-N、TN 具有很大的影响,水温越高,UBAF 硝化和反硝化效果越好;反之,则越差。而且,在低温条件下,UBAF 对NH4+-N、TN 的去除率都比较低,水温变化对脱氮效果影响最大;常温时,NH4+-N、TN 的去除率升高,水温变化对脱氮效果影响较小;较高水温时,NH4+-N、TN 的去除率明显升高,水温变化对曝气生物滤池脱氮效果影响最小。这是因为大多数硝化菌合适的生长温度是25~30 ℃之间,当温度低于25 ℃或者高于30 ℃时硝化菌生长减慢,水温低于15 ℃时,反硝化速率明显降低。此外,硝化细菌的繁殖速度要比异养菌低几个数量级,在低温条件下繁殖速度更低,影响硝化效果,导致UBAF 对 NH4+-N 的去除率下降; 反硝化菌的增殖速率降低,代谢速率也降低,相应的TN 去除率也下降。
2.2 水力负荷对UBAF 脱氮性能的影响
在气水比为2∶1,水温为16~25 ℃,进水NH4+-N 为28.56~57.29 mg/L,TN 为44.2~75.36 mg/L 时,考察了水力负荷对UBAF 去除TN 的影响,结果显示:当水力负荷由0.8 m/h 增加至1.2 m/h 时,UBAF 对 NH4+-N 的平均去除率由87.48%降为84.94%,下降了2.54% ,对TN 的平均去除率由36.40% 降为 32.38%,下降了4.02%;水力负荷由1.2 m/h 增至1.8 m/h 时,UBAF 对NH4+-N 的平均去除率为78.70%,下降了6.24%,对TN 的平均去除率为26.67%,下降了5.71%。可见,水力负荷对UBAF 的脱氮性能影响较大,随着水力负荷加大,UBAF 对NH4+-N、TN 的去除率逐渐降低,而且降幅越来越大。分析认为,一方面是由于硝化细菌的世代期较长,而随着水力负荷的增大,生物膜的迅速更新,这样不利于硝化细菌的附着和增殖,而且形成的生物膜厚度较薄,有利于氧传递到生物膜内部,破坏其内部的厌氧环境,不利于反硝化反应的进行;另一方面,水力负荷增加导致有机负荷随之也增加,在较高的有机物浓度下,降解有机质的异养菌处于绝对优势,抑制了自养性硝化细菌的增殖和活性。
2.3 有机负荷对UBAF 脱氮性能的影响
当滤速为0.8 m/h,气水比为2∶1,水温为16~ 25 ℃,且系统稳定运行时,有机容积负荷对UBAF 除NH4+-N 效果的影响见图 2。
图 2 有机负荷对UBAF 脱氮性能的影响
由图 2 可以看出,随着系统有机容积负荷的增加,UBAF 对NH4+-N、TN 的去除率逐渐下降。可见,当有机容积负荷升高时,有机容积负荷对NH4+-N 的去除有明显的抑制作用,此时异养菌降解有机物的区间会沿滤料高度方向上移,异养菌的生存空间亦随之向上拓展,压缩了硝化自养菌的活动空间,而且,由于异养菌的比生长速率要远大于硝化自养菌,在争夺溶解氧和营养基质的竞争中,往往是异养菌优先利用水中的氧,在有机底物较为丰富的条件下大量繁殖,使硝化自养菌的增殖受到限制。有机容积负荷越高时,异养菌对硝化自养菌的抑制就越强烈,从而使得UBAF 硝化性能呈现较大幅度的下降。随着有机容积负荷的增加,系统的硝化性能下降,硝酸盐氮浓度降低,可供反硝化菌用作电子受体的硝酸盐氮减少,反硝化菌的生长受到抑制,使得系统的脱氮性能下降。
2.4 氨氮容积负荷对UBAF 脱氮性能的影响
当滤速为0.8 m/h,气水比为2∶1,水温为16~ 25 ℃,且系统稳定运行时,NH4+-N 容积负荷对 UBAF 除NH4+-N 效果的影响见图 3。
图 3 氨氮容积负荷对UBAF 脱氮性能的影响
由图 3 可知,UBAF 对NH4+-N 的去除率随进水 NH4+-N 容积负荷的增加而降低。这是因为,硝化细菌属于化能自养菌,比增长速率小、世代周期长、对环境条件变化较为敏感。当NH4+-N 容积负荷较高时,高NH4+-N 浓度会抑制硝化自养菌的生长,影响 UBAF 的硝化性能。硝化性能的下降,使可供反硝化菌用作电子受体的硝酸盐氮减少,反硝化菌的生长受到抑制,TN 的去除率逐渐下降,可见,NH4+-N 容积负荷的增加会对UBAF 系统的脱氮效果产生较为不利的影响。
2.5 气水比对UBAF 脱氮性能的影响
在滤速为0.8 m/h,水温为16~25℃,进水NH4+-N 质量浓度为27.89~41.36 mg/L 时,考察了气水比对 UBAF 去除NH4+-N、TN 的影响,结果显示:当气水比为1∶1 时,出水中的DO 为0.77~1.35 mg/L,UBAF 对 NH4+-N、TN 的平均去除率分别为79.34%、29.77%;气水比增加至2∶1 时,出水中的DO 为1.76~2.65 mg/L,UBAF 对NH4+-N、TN 的平均去除率分别为 86.83%、35.44%; 气水比增至3∶1 时,出水中的DO 为2.32~3.35 mg/L,UBAF 对NH4+-N、TN 的平均去除率分别为87.98%、33.89%。
可见,随着气水比的增加,UBAF 对NH4+-N 的去除率呈上升的趋势。这是因为水中溶解氧充足有利于氨氮的氧化。气水比是控制DO 的主要操作条件,DO 随气水比增大而增大。根据双膜理论,氧气传递速率的大小由气液两相停滞膜的阻力决定,气水比越大,膜间传质阻力越小,生物膜内溶解氧浓度也越高,相应地提高了好氧微生物的活性和生物降解速率。但当气水比较大时,溶解氧穿过生物膜较深,生物膜的兼氧及厌氧层薄,内部难以形成缺氧区,大量的氨氮被转化为硝酸盐氮和亚硝酸盐氮,因此反硝化效果较差,TN 的去除率比较低,出水TN 浓度较高;而当气水比较小时,生物膜内的厌氧层加厚,反硝化效果变好;但当气水比为1∶1 时,因硝化作用进行的不彻底致使TN 去除效果又变差。。
3 结论和建议
(1)水温对UBAF 脱氮效果影响较大。当水温小于10 ℃时,UBAF 对NH4+-N、TN 的平均去除率分别为69.19% 、25.35% ; 水温10 ~20 ℃时,UBAF 对 NH4+-N、TN 的平均去除率为80.15%、33.68%; 在水温大于20 ℃时,NH4+-N、TN 的平均去除率分别为 89.16%,38.75%。水温越高,UBAF 脱氮效果越好。
(2)在水温为16~25 ℃,气水比为2∶1 时,当水力负荷由0.8 m/h 增加至1.2 m/h 时,UBAF 对NH4+-N 的平均去除率下降了2.54%,对TN 的平均去除率下降了4.02%;水力负荷由1.2 m/h 增至1.8 m/h 时, UBAF 对NH4+-N 的平均去除率下降了6.24%,对 TN 的平均去除率下降了5.71%。随着水力负荷的升高,UBAF 脱氮效果呈下降趋势。
(3)气水比对脱氮效果影响较大,在水力负荷为 0.8 m/h,水温为16~25 ℃,气水比为1∶1 时,UBAF 对 NH4+-N、TN 的平均去除率为79.34%、29.77%; 气水比增加至2∶1 时,UBAF 对NH4+-N、TN 的平均去除率为86.83%、35.44%; 气水比增至3∶1 时,UBAF 对 NH4+-N、TN 的平均去除率为87.98%、33.89%。
(4)两段UBAF 对TN 的去除效果不佳,为了增加其对TN 的去除效果,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002) 中的一级标准,笔者建议增加缺氧滤池进行反硝化,以达到最佳的脱氮效果。
相关参考
摘要:本研究基于上向流曝气生物滤池污水处理系统,研究了该工艺不同气水比、不同水力停留时间、不同滤料高度层、反冲洗强度对污染物的处理效能的影响。结果表明,气水比为4:1、水力停留时间2h时,BAF出水中
摘要:本研究基于上向流曝气生物滤池污水处理系统,研究了该工艺不同气水比、不同水力停留时间、不同滤料高度层、反冲洗强度对污染物的处理效能的影响。结果表明,气水比为4:1、水力停留时间2h时,BAF出水中
摘要:本研究基于上向流曝气生物滤池污水处理系统,研究了该工艺不同气水比、不同水力停留时间、不同滤料高度层、反冲洗强度对污染物的处理效能的影响。结果表明,气水比为4:1、水力停留时间2h时,BAF出水中
过多的含氮废水排入水体会使水体藻类、水生生物大量繁殖.导致水体富营养化现象的产生.给生活、生产用水带来危害。为了防止水体富营养化,目前有关工业废水与生活污水的脱氮研究已成为国内外环境问题研究中的重要课
过多的含氮废水排入水体会使水体藻类、水生生物大量繁殖.导致水体富营养化现象的产生.给生活、生产用水带来危害。为了防止水体富营养化,目前有关工业废水与生活污水的脱氮研究已成为国内外环境问题研究中的重要课
过多的含氮废水排入水体会使水体藻类、水生生物大量繁殖.导致水体富营养化现象的产生.给生活、生产用水带来危害。为了防止水体富营养化,目前有关工业废水与生活污水的脱氮研究已成为国内外环境问题研究中的重要课
炼油厂加氢裂化、加氢精制和铂重整等装置所排废水排放量约70t/h,酚类污染物在100~160mg/L,这股高酚废水未作任何处理直接排至污水处理场,本实验采用上向流曝气生物滤池(Biological
炼油厂加氢裂化、加氢精制和铂重整等装置所排废水排放量约70t/h,酚类污染物在100~160mg/L,这股高酚废水未作任何处理直接排至污水处理场,本实验采用上向流曝气生物滤池(Biological
炼油厂加氢裂化、加氢精制和铂重整等装置所排废水排放量约70t/h,酚类污染物在100~160mg/L,这股高酚废水未作任何处理直接排至污水处理场,本实验采用上向流曝气生物滤池(Biological