纳滤膜法水处理技术

Posted 反渗透

篇首语:一卷旌收千骑虏,万全身出百重围。本文由小常识网(cha138.com)小编为大家整理,主要介绍了纳滤膜法水处理技术相关的知识,希望对你有一定的参考价值。

1 膜技术的发展

1748年法国学者Abbe Nollet首次提出了膜分离现象,经过近二个世纪的摸索、研究,20世纪50年代膜分离技术才逐渐发展成为一门新兴高技术边缘学科,1963年第一个膜渗析器的诞生开创了膜分离技术的新纪元,二、三十年来得到了迅猛的发展,在各个工业领域及科研中得到大规模应用,出现了各种有价值的微滤、超滤、纳滤和反渗透等分离膜,受到了各个领域的普遍重视。而各种膜分离过程,首先是在水处理方面得到应用,而后推广到冶金、石油、化工、仪器、医药、仿生等诸多领域。

目前,微滤、超滤、纳滤、反渗透、渗析、电渗析等技术己经广泛在给水处理、纯水制备、海水淡化、苦咸水淡化等水处理领域中得到推广和应用,并在水处理的各个方面,给传统的水处理工艺以巨大的冲击和挑战。膜分离技术有着传统的给水处理工艺不可比拟的优点:

首先,膜分离技术可适用于从无机物到有机物,从病毒、细菌到微粒甚至特殊溶液体系的广泛分离,可充分确保水质,且处理效果不受原水水质、运行条件等因素的影响。

第二,膜分离过程为物理过程,不需加入化学药剂,提高了人们对水处理过程的信赖程度,易于为群众接受,属为人们称道的“绿色”技术。

第三,膜分离技术分离装置简单,占地面积小,系统集成容易,便于运输、拆卸、安装,运行环境清洁、整齐,可称之为真正意义上的“造水工厂”。

第四,膜分离过程系统简单、操作容易,且易控制,便于维修,有利于生产自动化的推广与普及。作为一种新兴的水处理技术,膜分离以其无可非议的先进性得到了世界各国学者们的广泛关注。

2 纳滤技术概述

膜分离技术被称为“二十一世纪的水处理技术”,自70年代应用于水处理领域后,得到了广泛的研究和空前的发展,受到世界各国水处理工作者的普遍关注,开展了不同水平。不同层次的理论研究和技术开发、应用。在给水处理领域应用最为广泛的是一系列的低压膜,如纳滤膜、反渗透膜等。其中,纳滤膜法水处理技术以其特殊的优势,获得了世界各国的水处理工作者的普遍关注,在水处理技术的研究和开发领域取得了可喜的成绩。

纳滤技术是从反渗透技术中分离出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。一般认为,纳滤膜存在着纳米级的细孔,且截留率大于95%的最小分子约为1mm,所以近几年来这种膜分离技术被命名为:Nanofiltration,简称:NF,中文译为:纳滤。在过去的很长一段时间里,纳滤膜被称为超低压反渗透膜(LPRO:Low Pressure Reverse Osmosis),或称选择性反渗透膜或松散反渗透膜(Loose RO:Loose Reverse Osmosis)。日本学者大谷敏郎曾对纳滤膜的分离性能进行了具体的定义:操作压力≤1.50mPa,截留分子量200~1000,NaCl的截留率≤90%的膜可以认为是纳滤膜[1]。现在,纳滤技术已经从反渗透技术中分离出来,成为介于超滤和反渗透技术之间的独立的分离技术,己经广泛应用于海水淡化、超纯水制造、食品工业、环境保护等诸多领域,成为膜分离技术中的一个重要的分支。

3 纳滤膜

纳滤过程的关键是纳滤膜。对膜材料的要求是:具有良好的成膜性、热稳定性、化学稳定性、机械强度高、耐酸碱及微生物侵蚀、耐氯和其它氧化性物质、有高水通量及高盐截留率、抗胶体及悬浮物污染,价格便宜、目前采用的纳德膜多为芳香族及聚酸氢类复合纳德膜。复合膜为非对称膜,由两部分结构组成:一部分为起支撑作用的多孔膜,其机理为筛分作用;另一部分为起分离作用的一层较薄的致密膜,其分离机理可用溶解扩散理论进行解释。对于复合膜,可以对起分离作用的表皮层和支撑层分别进行材料和结构的优化,可获得性能优良的复合膜。膜组件的形式有中空纤维、卷式、板框式和管式等。其中,中空纤维和卷式膜组件的填充密度高,造价低,组件内流体力学条件好;但是这两种膜组件的制造技术要求高,密封困难,使用中抗污染能力差,对料液预处理要求高。而板框式和管式膜组件虽然清洗方便、耐污染,但膜的填充密度低、造价高。因此,在纳滤系统中多使用中空纤维式或卷式膜组件。

在我国,对纳滤过程的理论研究比较早,但对纳滤膜的开发尚处于初步阶段。在美国、日本等国家,纳滤膜的开发已经取得了很大的进展,达到了商品化的程度,如美国Filmtec公司的NF系列纳滤膜、日本日东电工的NTR-7400系列纳滤膜及东丽公司的UTC系列纳滤膜等都是在水处理领域中应用比较广泛的商品化复合纳滤膜。

对于一般的反渗透膜,脱盐率是膜分离性能的重要指标,但对于纳滤膜,仅用脱盐率还不能说明其分离性能。有时,纳滤膜对分子量较大的物质的截留率反而低于分子量较小的物质。纳滤膜的过滤机理十分复杂。由于纳德膜技术为新兴技术,因此对纳滤的机理研究还处于探索阶段,有关文献还很少。但鉴于纳滤是反渗透的一个分支,因此很多现象可以用反渗透的机理模型进行解释。关于反渗透的膜透过理论[2]有朗斯代尔、默顿等的溶解扩散理论;里德、布雷顿等的氢键理论;舍伍德的扩散细孔流动理论;洛布和索里拉金提出的选择吸附细孔流动理论和格卢考夫的细孔理论等。

纳滤膜的过滤性能还与膜的荷电性、膜制造的工艺过程等有关。不同的纳滤膜对溶质有不同的选择透过性,如一般的纳滤膜对二价离子的截留率要比一价离子高,在多组分混合体系中,对一价离子的截留率还可能有所降低。纳滤膜的实际分离性能还与纳滤过程的操作压力、溶液浓度、温度等条件有关。如透过通量随操作压力的升高而增大,截留率随溶液浓度的增大而降低等。同时可以查看中国污水处理工程网更多技术文档。

4 纳滤技术的工程应用

纳滤膜的孔径范围介于反渗透膜和超滤膜之间,其对二价和多价离了及分子量在200~1000之间的有机物有较高的脱除性能,而对单价离子和小分子的脱除率则较低。而且,与反渗透过程相比,纳滤过程的操作压力更低(一般在1.0Mpa左右);同时由于纳滤膜对单价离子和小分子的脱除率低,过程渗透压较小,所以,在相同条件下,纳滤与反渗透相比可节能15%左右[3]。因而在水处理中,纳滤被广泛应用于饮用水的浓度净化、水软化、有机物和生物活性物质的除盐和浓缩、水中三卤代物前躯物的去除、不同分子量有机物的分级和浓缩、废水脱色等领域。

Sibille等研究了法国Auverw-sur-Oise市的地下水,对纳滤和生物处理饮用水(臭氧—生物活性炭过滤)进行了对比。结果表明,纳滤可以显著提高饮用水的水质,减少细菌数量和有机物的浓度,从而使后续消毒更有效,也减少了三氯甲烷的形成。但是,研究又指出,少量极易被细菌等吸收的可生物降解的有机物质(BOM:Biological Organic Matter)、可同化有机碳(AOC:Assimilable Organic Carbon)也能透过纳滤膜。

I.C.Escobar等的研究[4]中,将石灰软化设备与纳滤进行比较。结果表明,纳滤系统可有效去除原水中除了AOC以外的几乎全部溶解性有机碳(DOC:Dissolved Organic Carbon)含量。

虽然,纳滤技术的工程应用在美国、日本等国家的给水行业中已经得到大规模的推广,但在我国,将纳滤技术广泛地应用于工程实践的条件还不成熟,尚处于尝试阶段、本要问题是国产纳滤膜的性能指标不够过关。但目前已有工程实例的报道,如国内首套工业化大规模膜软化系统——山东长岛南隍城纳滤示范工程,是纳滤技术在高硬度海岛苦咸水净化的实际应用。该工程由国家海洋局杭州水处理中心设计,于1997年4月正式投入生产淡水,系统连续正常运行27个月,淡化水符合国家生活饮用水卫生标准[5]。

有关学者曾采用纳滤膜对某市自来水(以污染严重的淮河水为原水)进行深度处理试验,研究了纳滤循环制水试验工艺的效果。结果表明,循环试验工艺与单级纳滤工艺相比,在同样较低的压力下,出水率较高,并且能耗降低,减少了浓水排放。即使在回收率较高(80%)的情况下,膜出水中的总有机碳(TOC)仍比自来水低50%;对致会变物的去除十分显著,使Ames试验阳性的水转为阴性[6]。

5 纳滤膜应用中的问题

纳滤膜有较高的膜通量,可以截留有机及无机污染物,而对人体必需的一些离子又有较大的透过率,因此,把纳滤膜应用于饮用水的深度净化较其它的膜分离技术有较大的优势。目前,把钢滤膜应用于给水处理领域的主要问题是:

a)膜表面容易形成附着层,使膜的通量显著下降;
b)操作结束后,膜的清洗较困难;
c)膜的耐用性差。

这三个问题是目前膜分离的基本问题,也是纳滤膜法水处理技术难以广泛应用的主要原因。目前世界各国的水处理工作者正在进行广泛的研究,寻求解决这些问题的途径。纳滤技术在给水处理领域的推广应用还依赖于这些问题的进一步解决。

参考文献

[1]张瑾,刘凌·纳蟑膜及其应用展望.[J].食品与发酵工业,1998;24(6);49-56
[2](日)井山哲夫等.[C].水处理工程理论与应用
[3]R G Sudak et al.Procurement of New Reverse Osmosis Membranes:The Water Factory 21 Experience.[C].Proceeding of the National Water Supply Imporvement Association Conference, San Diego, California,1988
[4]I.C.Escobar ET AL,Influence of NF on Distribution System Biostability.J.AWWA,1991;6:76-84
[5]张国亮,陈益棠·纳滤膜软化技术在海岛饮用水制备中的应用.[J].水处理技术,2000;26(2):67-70
[6]李灵芝,李建渠,周蓉,王占生·纳滤(NF)膜制取饮用水的研究.[J].水处理技术,1998;24(2):88—91 来源:中国环保技术网 作者: 邱晓霞

相关参考

膜法水处理技术研究

膜分离技术是近40年来迅速崛起的1项高新技术,已发展成产业化的高效节能分离过程和先进的单元操作过程。目前已经成熟和不断研发出来的微滤、超滤、反渗透、纳滤、渗析、电渗折、气体分离、渗透汽化、无机膜等技术

膜法水处理技术研究

膜分离技术是近40年来迅速崛起的1项高新技术,已发展成产业化的高效节能分离过程和先进的单元操作过程。目前已经成熟和不断研发出来的微滤、超滤、反渗透、纳滤、渗析、电渗折、气体分离、渗透汽化、无机膜等技术

膜法水处理技术研究

膜分离技术是近40年来迅速崛起的1项高新技术,已发展成产业化的高效节能分离过程和先进的单元操作过程。目前已经成熟和不断研发出来的微滤、超滤、反渗透、纳滤、渗析、电渗折、气体分离、渗透汽化、无机膜等技术

膜法水处理的预处理

由于超滤(UF)、纳滤(NF)和反渗透(RO)膜绝大多数都是由高分子材料制成,其对进水水质有比较严格的要求,合理的预处理是保障系统正常运行和降低运行成本的关键环节。一旦预处理系统出现问题,污染物可能会

膜法水处理的预处理

由于超滤(UF)、纳滤(NF)和反渗透(RO)膜绝大多数都是由高分子材料制成,其对进水水质有比较严格的要求,合理的预处理是保障系统正常运行和降低运行成本的关键环节。一旦预处理系统出现问题,污染物可能会

膜法水处理的预处理

由于超滤(UF)、纳滤(NF)和反渗透(RO)膜绝大多数都是由高分子材料制成,其对进水水质有比较严格的要求,合理的预处理是保障系统正常运行和降低运行成本的关键环节。一旦预处理系统出现问题,污染物可能会

全膜法水处理技术

将微滤、超滤、反渗透和电去离子(EDI)等4种膜分离技术有机地组合在一起应用于工业水处理,达到高效去除污染物和脱盐目的技术,称之为全膜水处理技术。近几年,全膜法因在水处理过程中不需酸、碱,操作方便,出

全膜法水处理技术

将微滤、超滤、反渗透和电去离子(EDI)等4种膜分离技术有机地组合在一起应用于工业水处理,达到高效去除污染物和脱盐目的技术,称之为全膜水处理技术。近几年,全膜法因在水处理过程中不需酸、碱,操作方便,出

全膜法水处理技术

将微滤、超滤、反渗透和电去离子(EDI)等4种膜分离技术有机地组合在一起应用于工业水处理,达到高效去除污染物和脱盐目的技术,称之为全膜水处理技术。近几年,全膜法因在水处理过程中不需酸、碱,操作方便,出