含硝酸盐废水处理技术
Posted 硝酸盐
篇首语:博观而约取,厚积而薄发。本文由小常识网(cha138.com)小编为大家整理,主要介绍了含硝酸盐废水处理技术相关的知识,希望对你有一定的参考价值。
硝酸盐是由金属离子或铵根离子与硝酸根离子组成的盐类。
硝酸盐在水中溶解度高,稳定性好,难于形成共沉淀或吸附。因此,传统的简单的水处理技术,如石灰软化、过滤等工艺难以除去水中的硝酸盐。
水中的氨氮可以在一定条件下转化成亚硝酸盐,如果长期饮用,水中的亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。
下面,我们就常用的含硝酸盐废水 处理技术做一个介绍:
含硝酸盐废水处理技术 一、反渗透
常用的反渗透膜有:醋酸纤维素膜、聚酰胺膜和复合膜。压力范围为2070~10350kPa。这些膜通常没有选择性。Guter利用醋酸纤维素膜反渗透体系除去硝酸盐,当进水硝酸盐浓度为18~25mg/L,连续运行1000h,硝酸盐去除率达65%。Clifford等研究了反渗透系统除硝酸盐,反渗透膜为聚酰胺膜和三醋酸纤维素膜。在进水中加入硫酸和六甲基磷酸钠可以防止膜结垢。结果表明:聚酰胺膜比三醋酸纤维素膜更有效。与离子交换和电渗析相比,反渗透系统成本较高。Rautenbach等利用复合膜反渗透系统进行了中试研究,操作压力为14Pa,处理能力为2m3/h。
含硝酸盐废水处理技术 二、催化脱氮
Horold等开发了一种从饮用水中去除亚硝酸盐和硝酸盐的方法。结果表明:在氢气存在下,Pd-Al合金可有效地使亚硝酸盐还原成氮气(98%)和氨。Pb(5%)-Cu(1.25%)-Al2O3催化剂在50分钟内可使初始浓度100mg/L的硝酸盐完全去除。催化剂对硝酸盐的去除能力达3.13mgNO3-/min•g催化剂。约为微生物脱氮活性的30倍。该方法可在温度为10ºC, pH值6~8条件下进行,过?a href='http://www.baiven.com/baike/222/321214.html' target='_blank' style='color:#136ec2'>桃子谧远刂疲视糜谛⌒退硐低场8霉ひ漳壳吧写τ谘芯拷锥危矶嘁蛩兀缍ρР问呋恋某て谖榷ㄐ缘刃枰徊窖芯俊?/P>
含硝酸盐废水处理技术 三、化学脱氮
在碱性pH条件下,通过化学方法可以将水中的硝酸盐还原成氨,反应方程式可表示为:
NO3- + 8Fe(OH)2+ 6H2O → NH3 +8 F(OH)3 + OH-
该反应在催化剂Cu的作用下进行,Fe/NO3-的比值为15:1, 该工艺会产生大量的铁污泥,并且形成的氨需要用气提法除去。Sorg研究过用亚铁化合物去除硝酸盐,结果表明,由于成本太高,此工艺难于实际应用。Murphy等人利用粉末铝去除硝酸盐,反应主要产物为氨,占60~95%,可以通过气提法除去。反应的最佳pH为10.25,反应方程式为:
3NO3- + 2Al + 3H2O → 3NO2- + 2Al(OH)3
NO2- + 2Al + 5H2O → 3NH3 + 2Al(OH)3 + OH-
2NO2- + 2Al + 4H2O → N2 + 2Al(OH)3 + 2OH-
在利用石灰作软化剂的水处理厂可有效地使用该工艺,因为利用石灰通常可使pH值升高到9.1或以上。因而,调节pH值所需的费用较低,铝同水的反应可表示为:
Al + 6H2O → 2Al(OH)3 + 3H2
当pH值为9.1~9.3时,由于上述反应导致的铝的损失量小于2%。实验结果表明,还原1g硝酸盐需要1.16g 铝。
含硝酸盐废水处理技术 四、电渗析
Miquel等开发了利用电渗析技术选择性除去硝酸盐的方法。该方法可使硝酸盐浓度从50mg/L降低到25mg/L以下,它不需要添加任何化学试剂。Rautenbach等研究了电渗析法除去硝酸盐,并与反渗透法进行了比较。他们认为将硝酸盐从100mg/L降低到50mg/L,两种方法的成本大致相当。。
含硝酸盐废水处理技术 五、离子交换法
离子交换法去除硝酸盐的原理是:溶液中的NO3-通过与离子交换树脂上的Cl-或HCO3-发生交换而去除。树脂交换饱和后用NaCl或NaHCO3溶液再生。一般地,阴离子交换树脂对几种阴离子的选择性顺序为:
HCO3- < Cl- < NO3- <SO42-
因此,用常规的离子交换树脂处理含硫酸盐水中的硝酸盐是困难的。因为树脂几乎交换了水中的所有的硫酸盐后,才与水中的硝酸盐交换。也就是说,硫酸盐的存在会降低树脂对硝酸盐的去除能力。采用对硝酸盐有优先选择性的树脂可以较好地解决这个问题。这种树脂优先交换硝酸盐,对硝酸盐的交换容量不受水中硫酸盐的影响。
在树脂官能团NR3+中的N原子周围增加碳源子数目可以提高树脂对硝酸盐的选择性,这种类型的树脂对硝酸盐的选择性顺序依次为:
HCO3-<Cl-<SO42-<NO3-
当树脂上NR3+中的氮原子周围的甲基变为乙基时,树脂对硝酸盐与硫酸盐的选择性系数KSN从100增加到1000。
含硝酸盐废水处理技术 六、生物脱氮
生物脱氮,又称生物反硝化,是指在缺氧条件下,微生物利用NO3-作为电子受体,进行无氧呼吸,氧化有机物,将硝酸盐还原为氮气的过程。可表示为:
NO3- → NO2- → NO → N2O → N2
自然界中存在许多微生物,如假单胞菌属、微球菌属、反硝化菌属、无色杆菌属、气杆菌属、产碱杆菌属、螺旋菌属、变形杆菌属、硫杆菌属等,能够在厌氧条件下生长,并还原NO3-成N2。在这个过程中NO3-或NO2-代替氧作为末端电子受体,并且产生ATP。当电子从供体转移到受体时,微生物获得能量,用于合成新的细胞物质和维持现有细胞的生命活动。
根据微生物生长的碳源不同,生物反硝化可分为异养反硝化和自养反硝化。
相关参考
含硫酸盐废水中的硫酸盐本身虽然无害,但是它遇到厌氧环境会在硫酸盐还原菌(SRB)作用下产生H2S,H2S能严重腐蚀处理设施和排水管道,且气味恶臭,严重污染大气。另外硫酸盐废水排入水体会使受纳水体酸化,
含硫酸盐废水中的硫酸盐本身虽然无害,但是它遇到厌氧环境会在硫酸盐还原菌(SRB)作用下产生H2S,H2S能严重腐蚀处理设施和排水管道,且气味恶臭,严重污染大气。另外硫酸盐废水排入水体会使受纳水体酸化,
含硫酸盐废水中的硫酸盐本身虽然无害,但是它遇到厌氧环境会在硫酸盐还原菌(SRB)作用下产生H2S,H2S能严重腐蚀处理设施和排水管道,且气味恶臭,严重污染大气。另外硫酸盐废水排入水体会使受纳水体酸化,
在许多发展中国家和发达国家,地表水和地下水受到硝酸盐或亚硝酸盐污染的现象日益增多。离子交换、吸附、化学处理、膜技术和生物处理技术等是处理含硝酸盐废水的成熟方法。离子交换和吸附工艺主要用于高纯水的处理,
在许多发展中国家和发达国家,地表水和地下水受到硝酸盐或亚硝酸盐污染的现象日益增多。离子交换、吸附、化学处理、膜技术和生物处理技术等是处理含硝酸盐废水的成熟方法。离子交换和吸附工艺主要用于高纯水的处理,
在许多发展中国家和发达国家,地表水和地下水受到硝酸盐或亚硝酸盐污染的现象日益增多。离子交换、吸附、化学处理、膜技术和生物处理技术等是处理含硝酸盐废水的成熟方法。离子交换和吸附工艺主要用于高纯水的处理,
高温气冷堆(HTGR)球形燃料元件生产过程中会产生大量含氨、有机物、铀和无机硝酸盐等物质的低水平放射性废液。为了满足核燃料元件的经济性指标,将废液中的物质有效回用,并减少对环境的有害影响,需开展对放射
高温气冷堆(HTGR)球形燃料元件生产过程中会产生大量含氨、有机物、铀和无机硝酸盐等物质的低水平放射性废液。为了满足核燃料元件的经济性指标,将废液中的物质有效回用,并减少对环境的有害影响,需开展对放射
高温气冷堆(HTGR)球形燃料元件生产过程中会产生大量含氨、有机物、铀和无机硝酸盐等物质的低水平放射性废液。为了满足核燃料元件的经济性指标,将废液中的物质有效回用,并减少对环境的有害影响,需开展对放射