上流式厌氧污泥床处理垃圾渗滤液技术

Posted 反应器

篇首语:要得惊人艺,须下苦功夫。本文由小常识网(cha138.com)小编为大家整理,主要介绍了上流式厌氧污泥床处理垃圾渗滤液技术相关的知识,希望对你有一定的参考价值。

摘要:采用上流式厌氧污泥床(UASB)处理垃圾渗滤液,通过试验研究了UASB反应器处理垃圾渗滤液的启动时间、最大容积负荷、颗粒污泥的产生过程、对碱度的要求及微量元素对运行的影响。试验结果表明:启动80 d左右可在反应器底部出现微小颗粒状污泥,启动阶段共82 d;最大容积负荷控制在5 kgCOD/(m3.d)较为合理;垃圾渗滤液能保证厌氧过程的碱度需要,处理过程不必投加药剂,但需投加微量元素Fe、Ni、Co以使对COD的去除率稳步提高到50%。

关键词:上流式厌氧污泥床,垃圾渗滤液,容积负荷

近年来,由垃圾渗滤液带来的环境问题越来越受到人们的关注,运用物理化学法、生物法对其进行处理的研究时有报道。厌氧技术尤其是上流式厌氧污泥床(UASB)因具有容积负荷高、污泥产量少等优点而在渗滤液处理中的研究和应用越来越多。笔者采用上流式厌氧污泥床(UASB)对垃圾渗滤液进行处理,探索了UASB反应器的各种工艺操作条件对渗滤液生物降解效率的影响,并通过对影响机理的初步探讨为其工程应用提供参考依据。

1材料和方法

1·1试验装置试验装置

如图1所示。图1 UASB试验装置示意图F ig.1 Sketch m ap ofUASB反应器从上到下可分为三相分离区、污泥床区和进水区三个部分。反应器内径为15.4 cm,总高度为105 cm,其中三相分离器部分高度为25 cm,悬高度为67 cm,反应器有效容积为14.96 L。另外,沿高度方向在反应器壁上等间隔设置8个采样口。通过自制恒温控制仪对进水加热,使反应器内的温度控制在(35±2)℃。

1·2渗滤液水质

试验用水为重庆市南岸区骑龙村城市垃圾卫生填埋场的垃圾渗滤液。渗滤液水质情况见表1。

该垃圾填埋场使用时间已超过10年。从表1中的数据可见, BOD5 /COD = 0. 28,渗滤液的可生化性较差。考虑到工程应用的要求,在试验过程中除污泥驯化期外,未补充碳源或投加营养物。

1.3 试验方法

通过改变反应器进水浓度和进水流量,不断提高反应器容积负荷,考察对COD的去除效果、颗粒污泥的产生过程、UASB 反应器对垃圾渗滤液水质及水量变化的抗冲击能力、对碱度的要求以及微量元素对运行的影响。水质分析按照水质监测标准方法进行[ 1 ] 。

2 试验过程

2.1 污泥接种及驯化阶段

接种污泥为重庆市唐家桥城市污水处理厂消化池的脱水污泥(含水率为70%~80% ) ,污泥浓度为28 g/L,接种量为10 L。
取来的污泥先用由蔗糖、氮、磷等营养物配制的有机废水进行培养,使其恢复活性。1周后在培养液中加入垃圾渗滤液,使渗滤液的量占进水量的20%~30%,驯化阶段将进水COD浓度保持在500mg/L。经驯化1周后,厌氧细菌逐渐适应了垃圾渗滤液的水质。

2.2 启动运行阶段

在启动运行阶段(共82 d) ,逐渐增加进水有机物浓度,不断提高反应器的容积负荷,直到处理效果稳定并出现颗粒污泥为止。当系统对COD的去除率达到50%时, 增加负荷且每次提高0. 2 ~0. 5kgCOD / (m3 •d) ,每次停留时间为10 d左右,以此来考察UASB反应器对渗滤液的处理能力。

2.3 提高负荷阶段

在提高负荷阶段(共25 d) ,通过改变进水有机物浓度和流量,不断提高容积负荷,从3. 04 kgCOD /(m3 •d)提高到5. 53 kgCOD / (m3 •d) 。每次提高的幅度较大,但没有出现pH 值大幅下降的现象。在这一阶段,处理效果未有明显提高,并在后期由于微生物的处理能力达到饱和而出现了下降趋势。

3 结果与分析

3.1 容积负荷

容积负荷直接反映了食物与微生物之间的平衡关系,它可影响反应器对有机物的去除率,而容积负荷过大是造成反应器酸化的直接原因。试验过程中容积负荷与COD去除率的关系见图2。

从图2可以看出,容积负荷提高后,对COD的去除率下降,但几天内又会逐步提高并趋于稳定。结果表明,增加容积负荷会使厌氧污泥的浓度和活性不断增加,通过污泥生物吸附、絮凝、分解的有机物便会相应增加。这一阶段一直持续到COD容积负荷为2. 75 kg/ (m3 •d) 。进入负荷提高阶段后,大幅度提高COD 容积负荷,每次提高幅度为1. 0kg/ (m3 •d)左右。由图2可以看出,容积负荷的改变对反应器去除率的影响不大,整个试验过程系统对COD的去除率保持在45%左右。当容积负荷增加到较高值时,污泥的生物吸附逐渐接近饱和,表现为对COD的去除率出现下降。在实际运行中,总是希望容积负荷尽量大,以减少反应器体积,进而减少投资。但由试验结果可知,容积负荷太高会使系统对COD的去除率下降。综合考虑后,取COD容积负荷为5. 0 kg/ (m3 •d) [ 2 ] 。

3.2 碱度和pH值

根据厌氧消化机理可知,有机物在厌氧条件下的降解过程可分为酸性消化(酸性发酵)和碱性消化(碱性发酵)两个阶段,在连续消化过程中,二者是同时进行的,并且保持着某种动态平衡。这种动态平衡一旦被pH、温度、容积负荷等外部因素所打破,则碱性消化(甲烷消化)往往会停止,其结果将导致低级脂肪酸的积累、酸化和厌氧消化进程的失常。水中碱度是中和酸能力的一个指标,其主要来源于弱酸盐,它控制着pH值,同时也是水中存在其他酸时缓冲pH能力的一个指标。McCany 建议总碱度应维持在2 000~5 000 mg/L范围内,如果反应器总碱度< 1 000 mg/L就会导致pH值的下降[ 3 ] 。在试验中,对出水的碱度和pH 值进行了间隔性检测,二者与容积负荷的变化曲线分别见图3、4。。

由图3、4可以看出,试验中出水碱度的变化范围为1 555. 46~2 185. 22 mg/L,平均值约为2 000mg/L,出水pH值的变化范围为5. 21 ~8. 63,大部分时间为7~8。每次负荷提高后, pH值都会有所下降。在第62 天时,容积负荷增加较大,从1. 32kgCOD / (m3 •d)增加至2. 03 kgCOD / (m3 •d) ,使得反应器出水pH值由7. 14降低到5. 21,出现挥发酸积累现象,对COD的去除率也下降较多,碱度相应也有所下降。针对该情况,试验从第63天开始停止进水,第66天重新进水,随后pH值稳步提高,酸化现象逐步得到控制。
在试验中,负荷增加导致出水pH值下降是由于负荷增加后引入了大量的可生化降解有机物,在厌氧微生物的作用下, 被转化成挥发性有机酸(VFA) ,造成挥发性有机酸的积累,从而使pH值下降。随着反应的进行,积累的有机酸逐渐被产甲烷菌转化为甲烷,有机酸积累的情况得到缓解后, pH值升高且趋于稳定。整个运行期间出现过pH值波动较大的现象,但停止进水后,酸化现象逐渐得到控制。同时,负荷的增加对碱度的影响不大,能满足厌氧过程的碱度需要,系统运行良好,不必投加药剂。

3.3 微量元素

在厌氧处理过程中,由于微生物对微量元素的需要量非常少,因此在考虑到其对N、P等营养物需求的同时,却容易忽视对S、Fe、Ni、Co、Mo、Mn等微量元素的需求。事实上,上述微量元素对调节厌氧微生物细胞的渗透压、pH值、氧化还原电位等都起着至关重要的作用。有些元素如S、Fe、Ni还是厌氧发酵过程中甲烷杆菌(Methanobrevibacter arboriphi2lus) 、甲烷八叠球菌(Methanobreacteria microchip s)的必不可少的组成成分。对于垃圾渗滤液来说,N、P、S营养物的含量基本上可以满足厌氧生物的需求,因此无需额外添加,但是Fe、Ni、Co等主要微量元素的含量已不能满足反应器高效运行的需要,因此必须适量添加。
从试验运行过程来看,在试验初期,由于忽视了微量元素在厌氧消化过程中的重要作用,导致微生物长期处于一种营养不良状态,活性保持在很低的水平,严重抑制了厌氧反应的进行。反应前10 d,对COD的去除率一直在10%~15% ,从第11 天开始,针对厌氧微生物尤其是甲烷菌的特点,向反应器中投加了铁、镍、钴等营养元素,其投加量根据废水可生物降解的COD浓度和它的酸化率来估算,在实际应用时应将计算结果增大1 倍[ 4 ] ,试验最后确定FeCl2、NiCl2、CoCl2 的投加量分别为1. 5、0. 4、0. 2mg/L。结果表明投加微量元素后,厌氧处理效果有较大的提高,对COD的去除率逐渐提高到了50%。

3.4 颗粒污泥的形成过程能否成功地培育颗粒污泥是保证UASB反应器

高效和稳定运行的关键[ 5 ] 。在试验中通过控制容积负荷在0. 31~5. 41 kgCOD / (m3 •d)、pH值在6. 5~8、启动初期水力负荷为0. 6~1. 0 m3 / (m2 •h) ,正常运转时保持在0. 5~0. 7 m3 / (m2 •h) ,使得污泥颗粒化进展顺利,在运行大约80 d后,反应器底部出现微小颗粒状污泥(不规则球型、黑色、粒径为1~3 mm) 。

4 结论

① 以UASB反应器处理垃圾渗滤液,启动负荷为0. 3 kgCOD / (m3 •d) ,进水流量为5. 5 mL /min,并采用出水回流的方式控制水力负荷,启动效果较好。到第82天时,反应器的容积负荷为2. 75 kgCOD /(m3 •d) ,反应器中有颗粒污泥产生,对COD的去除率稳定在45%左右,启动结束。整个启动阶段耗时为82 d。

② 从第83天开始进入提高负荷阶段,通过提高进水有机物浓度和流量大幅提高COD容积负荷。结果表明,UASB反应器的缓冲能力较强,但因生物吸附的饱和性,当容积负荷增加到较高值时,污泥的生物吸附接近饱和,对COD的去除率下降。考虑到工程应用,认为取容积负荷为5 kgCOD / (m3 •d)是合理的。

③ 在本处理工艺中渗滤液能保证厌氧过程的碱度需要,不必投加药剂。整个试验期间出水pH值并未出现大的波动。第62天时反应器出现酸化,采用停止进水等措施后,酸化现象得到有效控制。

④ 于试验第11 天,向反应器中投加微量元素, FeCl2、NiCl2、CoCl2 的投量分别为1. 5、0. 4、0. 2mg/L。厌氧处理效果大幅提高,对COD 的去除率由15%稳步提高到50% ,充分证明微量元素在厌氧处理中发挥着重要的作用。(重庆大学资源及环境科学学院)

相关参考

渗滤液处理工艺分析

UASB工艺UASB(上流式厌氧污泥床)是一种具有很高处理能力和处理效率的厌氧处理工艺,尤其适用于各种高浓度有机废水的处理。UASB处理渗滤液,当水温在3O℃时,负荷可达10kg/(m·d),COD的

渗滤液处理工艺分析

UASB工艺UASB(上流式厌氧污泥床)是一种具有很高处理能力和处理效率的厌氧处理工艺,尤其适用于各种高浓度有机废水的处理。UASB处理渗滤液,当水温在3O℃时,负荷可达10kg/(m·d),COD的

渗滤液处理工艺分析

UASB工艺UASB(上流式厌氧污泥床)是一种具有很高处理能力和处理效率的厌氧处理工艺,尤其适用于各种高浓度有机废水的处理。UASB处理渗滤液,当水温在3O℃时,负荷可达10kg/(m·d),COD的

蚯蚓微生物生态滤床处理垃圾渗滤液

蚯蚓生态滤池fvermibiofiher.简称VBF)Ⅲ是近年来首先在法国和智利发展起来的一项新型的污水处理技术这项技术是根据蚯蚓具有提高土壤透水性能和促进有机物质的分解转化等生态学功能而设计的有研究

蚯蚓微生物生态滤床处理垃圾渗滤液

蚯蚓生态滤池fvermibiofiher.简称VBF)Ⅲ是近年来首先在法国和智利发展起来的一项新型的污水处理技术这项技术是根据蚯蚓具有提高土壤透水性能和促进有机物质的分解转化等生态学功能而设计的有研究

蚯蚓微生物生态滤床处理垃圾渗滤液

蚯蚓生态滤池fvermibiofiher.简称VBF)Ⅲ是近年来首先在法国和智利发展起来的一项新型的污水处理技术这项技术是根据蚯蚓具有提高土壤透水性能和促进有机物质的分解转化等生态学功能而设计的有研究

垃圾填埋场渗滤液的处理方法

生物法是渗滤液处理中最常用的一种方法,由于其运行费用相对较低、处理效率高,不会出现化学污泥等造成二次污染,因而被世界各国广泛采用。具体的工艺形式有传统活性污泥法、稳定塘、生物转盘、厌氧固定膜生物反应器

垃圾填埋场渗滤液的处理方法

生物法是渗滤液处理中最常用的一种方法,由于其运行费用相对较低、处理效率高,不会出现化学污泥等造成二次污染,因而被世界各国广泛采用。具体的工艺形式有传统活性污泥法、稳定塘、生物转盘、厌氧固定膜生物反应器

垃圾填埋场渗滤液的处理方法

生物法是渗滤液处理中最常用的一种方法,由于其运行费用相对较低、处理效率高,不会出现化学污泥等造成二次污染,因而被世界各国广泛采用。具体的工艺形式有传统活性污泥法、稳定塘、生物转盘、厌氧固定膜生物反应器