高盐榨菜废水除污处理方法
Posted 榨菜
篇首语:我走在逃离命运的路上,却与命运不期而遇。本文由小常识网(cha138.com)小编为大家整理,主要介绍了高盐榨菜废水除污处理方法相关的知识,希望对你有一定的参考价值。
含盐废水因其盐度会对微生物生长产生抑制作用而成为目前较难处理的工业废水之一[1]。目前国内外学者采用SBR、生物接触氧化、物化生化组合等多种不同的处理工艺研究了含盐废水生物处理效能,并得出了一系列含盐废水生化处理系统的关键参数[1, 2],但这些工艺均存在盐度对活性污泥微生物生态抑制、污泥沉降性能低、盐度变化对系统稳定性的影响显著等问题,总体处理效能较低。总体而言,聚集态微生物较分散态微生物对高浓度NaCl的耐受力高,也就是说生物膜处理工艺较适合处理高盐高浓度废水[3]。而好氧颗粒污泥是在好氧条件下微生物自发形成的细胞自身固定化过程,它是一种特殊的生物膜,具有良好的沉降性能,可减少反应器容积及占地面积,在间歇反应器中使用可以缩短运行周期,提高反应器的处理效率;具有较高的生物量,可以承受高有机负荷和冲击负荷;集不同性质微生物(好氧、兼氧和厌氧微生物)于一体,具有多种代谢形式,是实现废水中生物营养物质一体化处理的理想主体[4, 5, 6]。同时含盐有机废水会产生较大的浮力导致污泥上浮和流失,而这一点恰恰是好氧颗粒污泥形成的基本条件[5],因此好氧颗粒污泥特别适合处理高盐高浓度的工业废水,并开始得到了一些应用,表现出较好的稳定性以及较高的处理效能[7, 8, 9]。但上述研究基本采用实验室模拟配水,水质成分比较单一,并且相对于高盐榨菜废水而言,其有机物和氮磷浓度均较低。而目前并未见利用好氧颗粒污泥处理像榨菜废水这类高盐高氮磷高浓度有机废水的相关报道。本试验拟在SBR反应器中接种本实验室培养成功的高盐好氧颗粒污泥[10]处理榨菜工业园区产生的实际含盐榨菜废水(盐度3%,NaCl计,下同),考察其对污染物的去除特性,以期为颗粒污泥处理高盐榨菜废水的工程应用提供技术支撑。
1 材料与方法
1.1 试验水质及接种好氧颗粒污泥
试验用水取自重庆涪陵某榨菜厂的腌制废液(盐度15%),经稀释后得到高盐废水,平均盐度为3%,COD、NH4+-N、TN、PO43--P平均质量浓度分别为4 500、95、160、35 mg/L,属于典型的高盐高氮磷高有机物废水。接种的好氧颗粒污泥为本实验室在3%盐胁迫浓度下以葡萄糖为唯一碳源,人工配水成功培养出并稳定运行8周后的成熟颗粒污泥,污泥颗粒大小不一,平均粒径为1.3 mm,SVI为51.3 mL/g,最小沉降速度4.3 m/h。
1.2 试验装置
试验采用4个完全相同PVC制成的SBR反应器,反应器内径为4.8 cm,有效高度为105 cm,有效容积为1.9 L,容积交换率根据进水负荷要求确定。反应器底部设置曝气砂头,由空气压缩机供气,曝气量根据不同试验阶段所需的溶解氧大小来控制。反应器运行周期为12 h,其中进水2 min、沉淀 5 min、排水3 min,剩余时间进行曝气。通过加热棒将反应器内的温度控制在(25±1) ℃。
1.3 试验方法
首先对接种的好氧颗粒污泥用高盐榨菜废水进行适应性驯化,待反应器对COD去除率稳定达到90%以上后,进行正式试验。试验分两阶段进行,第一阶段通过平行试验考察有机负荷(以COD计)对反应器除污特性的影响,即在反应器DO为6.0 mg/L条件下控制4个反应器的容积交换率分别为0.4、0.5、0.6、0.7,对应有机负荷为3.6、4.5、5.4、6.3 kg/(m3·d);在第一阶段确定的最佳有机负荷条件下,采用平行试验方法考察DO分别为5.0、6.0、7.0、8.0 mg/L时反应器的除污效能。试验期间,测试COD、NH4+-N、TN、PO43--P等指标。
1.4 分析方法
COD采用重铬酸钾完全氧化-差减法[11],DO采用HACH HQ30D溶解氧测定仪测定,其他指标均按标准方法测定。
2 结果与分析
2.1 有机负荷对反应器除污特性的影响
不同有机负荷条件下,好氧颗粒污泥对高盐榨菜废水的处理效能如图1所示。
图1 有机负荷对好氧颗粒污泥除污特性的影响
由图1可知,有机负荷对好氧颗粒污泥系统除污特性的影响显著,当有机负荷为5.4 kg/(m3·d)时,好氧颗粒污泥对高盐榨菜废水的除污效能达到最高,COD、NH4+-N、TN、PO43--P平均去除率分别为97.4%、80.9%、41.0%、73.8%。
图1(a)结果表明,颗粒污泥系统对COD的去除效果随有机负荷的增加而增加,去除率从93.2%增加至97.4%。分析认为:随着有机负荷的增加,颗粒污泥中的微生物快速生长繁殖,使颗粒粒径不断增加;同时较高的有机负荷也有助于克服传质阻力,从而表现为颗粒污泥对有机物的降解速率随之增加。但是,当有机负荷过高时,因微生物增长速率过高而导致粒径增长过大,底物传质受到影响,颗粒内核开始分解,引起颗粒密度和机械强度降低;同时,在DO浓度不变的条件下,因颗粒粒径过大,导致颗粒内部出现厌氧区域产生气体,最终导致颗粒发生解体,从而表现为当有机负荷从5.4 kg/(m3·d)增加至6.3 kg/(m3·d)时,COD去除率反而有所降低。
图1(b)、(c)结果表明,在一定范围内,脱氮效果随有机负荷的增加而增大,这与传统的自养硝化菌脱氮理论不符。同时,结合反应器对COD、NH4+-N和TN的去除效果的总体变化趋势可知,硝化菌并不能从氨氮氧化过程中获得能量,主要还是从对有机物的同化作用来合成细菌、获得能量和摄取营养。由此,可推断本系统的脱氮作用主要由异养硝化菌完成,即异养硝化菌直接利用有机碳源合成生命体并进行异养硝化。随着有机负荷的提高,异养硝化菌在有机碳源充足的条件下不断合成生命体,并在氨单加氧酶(AMO)[12]作用下不断对氨氮进行氧化,异养硝化作用得到加强,从而表现为反应器的脱氮效能不断提高;同样有机负荷过高时,由于颗粒发生解体,异养硝化菌不断洗脱出反应器,而导致脱氮效能有所降低。总体来说,反应器对TN的去除率相对较低,最高仅达41%,而出水并未出现硝酸盐的大量积累。分析认为,完整的异养硝化过程包括[13]:氨氮→羟胺→亚硝氮→硝氮。这一过程可由兼具反硝化作用的异养硝化菌完成,在好氧条件下,将中间产物羟胺在羟胺氧化还原酶(HAO)作用下氧化成亚硝酸盐[14]。而本系统异养硝化过程出现了亚硝化盐的积累,从而导致反应器对TN的去除效果不佳。
图1(d)结果表明,PO43--P去除率变化趋势基本与COD去除率一致。分析认为,反应器对磷的去除主要通过聚磷菌的作用完成。而聚磷菌对磷的吸收是一个耗能过程,需要消耗有机物来提供能量,所以有机负荷直接影响聚磷菌的吸磷效率;同时,进水有机负荷直接影响颗粒污泥结构,从而创造出适合聚磷菌生存的厌氧/好氧微观环境,提高反应器的除磷效能。但有机负荷过高则会破坏颗粒污泥结构并造成解体,从而影响聚磷菌除磷所需的环境。
2.2 DO对反应器除污特性的影响
不同DO条件下,好氧颗粒污泥对高盐榨菜废水的处理效能如图2所示。
图2 DO对好氧颗粒污泥除污特性的影响
由图2可知,DO对好氧颗粒污泥除污特性的影响显著,当DO为7.0 mg/L时,好氧颗粒污泥对高盐榨菜废水的除污效能达到最高,COD、NH4+-N、TN、PO43--P平均去除率分别为93.9%、79.2%、35.2%、69.5%。
由图2(a)可知,好氧颗粒污泥对COD的去除率随DO的增加而升高,从92.7%增加至94.4%。分析认为,DO浓度较高时,颗粒污泥中的丝状菌生长受到一定抑制;同时在高DO所提供的高水流剪切力下,颗粒表面的丝状菌被剪切掉并洗脱出反应器,颗粒密度不断增大,生物量不断增加,从而表现为COD去除率随DO浓度的增加而增大。
由图2(b)、(c)可知,反应器随着DO质量浓度从5.0 mg/L提高至7.0 mg/L时,脱氮效果随之增加,但当DO浓度继续增加后,脱氮效果反而有所下降。试验结果表明,DO对异养硝化和好氧反硝化具有较大的影响。过高的DO反而导致了反应器中亚硝酸盐的积累,在DO质量浓度为7.0 mg/L时,反应器对NH4+-N、TN的去除率达到最高,分别为79.2%、35.2%;DO浓度较之高或低,均会导致脱氮效果降低而发生亚硝酸盐的积累。相关研究结果表明[12],O2在AMO和HAO处参与反应,并且与亚硝氮/硝氮协同呼吸。而不同菌种对DO的耐受能力也不同,本试验最佳DO质量浓度为7.0 mg/L,这与文献[15]报道的异养硝化菌(Marinobacter sp.)最佳DO质量浓度为6.75 mg/L这一结论比较一致。由此可见,DO浓度的变化将影响细菌体内AMO的表现,从而使异养硝化菌的代谢途径发生改变[13]。因此,合理控制DO浓度,可以优化颗粒污泥脱氮效果。
由图2(d)可知,在完全好氧条件下,系统具有良好的除磷效能。当DO在5~8 mg/L时,反应器并未按传统生物除磷理论中要求的好氧与厌氧交替环境运行,但同样能实现较好的除磷效果,磷酸盐去除率可达60% ~70%。分析认为,在完全好氧条件下,反应器中磷的去除得益于颗粒污泥的特殊结构,主要通过两个阶段实现。第一阶段,在进水阶段由于进水中较高的COD,有机物向颗粒内部扩散,为内部的聚磷菌提供碳源;另一方面,DO在颗粒污泥的梯度分布,形成内部厌氧区,为聚磷菌厌氧释磷提供了条件。第二阶段,随着试验的进行,有机物不断得到降解,颗粒从外至内的生物活性降低,DO向颗粒内部扩散程度加强,颗粒内的好氧和兼氧区加大,为聚磷菌的好氧吸磷提供条件。因此,颗粒污泥对PO43--P的去除效果直接受颗粒内部形成的厌氧/好氧微环境的影响,而这体现在DO浓度水平上。当DO浓度过低时,好氧区域过小,影响了聚磷菌好氧吸磷效率,从而表现为PO43--P去除率仅为58.8%;同样,当DO质量浓度从7.0 mg/L增加至8.0 mg/L时,颗粒内部形成的厌氧区域减小,而影响聚磷菌的厌氧释磷效率,从而表现为磷酸盐去除率从69.5%降低至63.3%。。
3 结论
(1)有机负荷对好氧颗粒污泥除污特性影响显著,有机负荷过高或过低均会影响颗粒粒径及结构,从而影响反应器对污染物的去除。在有机负荷为5.4 kg/(m3·d)时,反应器的除污效能达到最高,COD、NH4+-N、TN、PO43--P去除率分别为97.4%、80.9%、41.0%、73.8%。颗粒污泥主要通过异养硝化途径实现了生物脱氮,但因反应器内出现了亚硝酸盐积累而导致TN去除率总体不高。
(2)DO对好氧颗粒污泥的除污特性有显著影响,DO的提高有助于对COD的去除,但过高或过低的DO则会导致亚硝酸盐的积累和颗粒污泥微环境的分布,从而影响反应器对其他污染物的去除效果。本实验中,当DO为7.0 mg/L时,系统反应器的除污效能最佳,COD、NH4+-N、TN、PO43--P去除率分别为93.9%、79.2%、35.2%、69.5%。
相关参考
榨菜产业是涪陵区农村经济的支柱产业,绝大多数榨菜生产企业无榨菜废水治理设施〔1〕。榨菜废水直接排入水体,不仅严重影响了周边居民的居住环境和长江水质,而且制约了涪陵区社会经济可持续发展,同时也严重影响了
榨菜产业是涪陵区农村经济的支柱产业,绝大多数榨菜生产企业无榨菜废水治理设施〔1〕。榨菜废水直接排入水体,不仅严重影响了周边居民的居住环境和长江水质,而且制约了涪陵区社会经济可持续发展,同时也严重影响了
榨菜产业是涪陵区农村经济的支柱产业,绝大多数榨菜生产企业无榨菜废水治理设施〔1〕。榨菜废水直接排入水体,不仅严重影响了周边居民的居住环境和长江水质,而且制约了涪陵区社会经济可持续发展,同时也严重影响了
近年来,榨菜生产规模化、集约化程度愈来愈高,并形成大量特色食品工业园区,在其生产过程中产生大量高盐高氮磷有机废水(10m3/t榨菜),该类废水具有盐度高(3%~15%)、有机物及氮磷浓度高(COD30
近年来,榨菜生产规模化、集约化程度愈来愈高,并形成大量特色食品工业园区,在其生产过程中产生大量高盐高氮磷有机废水(10m3/t榨菜),该类废水具有盐度高(3%~15%)、有机物及氮磷浓度高(COD30
近年来,榨菜生产规模化、集约化程度愈来愈高,并形成大量特色食品工业园区,在其生产过程中产生大量高盐高氮磷有机废水(10m3/t榨菜),该类废水具有盐度高(3%~15%)、有机物及氮磷浓度高(COD30
重庆市涪陵区地处三峡库区腹地,是我国著名的榨菜之乡。全区榨菜种植涉及23个乡镇街道近60万菜农,现有榨菜加工企业60余家,大部分为规模小于5000t/a的小型乡镇企业。针对这些生产不规律、厂区分散、污
重庆市涪陵区地处三峡库区腹地,是我国著名的榨菜之乡。全区榨菜种植涉及23个乡镇街道近60万菜农,现有榨菜加工企业60余家,大部分为规模小于5000t/a的小型乡镇企业。针对这些生产不规律、厂区分散、污
重庆市涪陵区地处三峡库区腹地,是我国著名的榨菜之乡。全区榨菜种植涉及23个乡镇街道近60万菜农,现有榨菜加工企业60余家,大部分为规模小于5000t/a的小型乡镇企业。针对这些生产不规律、厂区分散、污