生物活性氮在制浆造纸工业废水处理中的应用
Posted 尿素
篇首语:生活是活给自己看的,你有多大成色,世界才会给你多大脸色。本文由小常识网(cha138.com)小编为大家整理,主要介绍了生物活性氮在制浆造纸工业废水处理中的应用相关的知识,希望对你有一定的参考价值。
生物活性氮(SuperNitro,简称SN)是一种液态氮源,属于生理肥料新产品,本实验用SN替代传统氮源尿素,在制浆造纸工业废水处理系统中作为氮营养,当SN用量仅为原尿素用量的1/3(以尿素质量计)时,废水中CODCr去除效果良好,二沉池出水氨氮浓度达到排放标准,SV30波动不大。通过生物相观察发现,投加SN时,活性污泥菌胶团比较密实,无丝状菌,能够观察到轮虫、钟虫和楯纤虫等表明水质良好的原后生动物。制浆造纸工业废水是我国主要的污染水源之一,目前,处理制浆造纸工业废水的主要方法仍以活性污泥法居多。制浆造纸工业废水存在营养单一、氮和磷营养缺乏的问题,而氮是构成微生物体的重要元素,菌体蛋白质、核酸等分子中都含有氮元素,氮可占菌体干质量的10%。在活性污泥法处理制浆造纸工业废水过程中,主要以投加尿素、氨水和铵盐作为氮源。
尿素作为传统的氮源,广泛用于制浆造纸废水处理系统。作为氮源,尿素优点为单价便宜,固体运输方便;缺点为被微生物吸收利用的效率低,用量大,还需要专用的溶解罐,占用劳动力及电能。尿素投加至生化系统中,在脲酶的作用下转化为氨态氮形态,在中性或碱性环境下,氨态氮会分解易挥发的氨气,在曝气的情况下,容易形成氮气流失。在农业研究中,尿素单独使用时,挥发损失大,利用率仅为30%左右。
生物制剂是近年来出现的营养源,比如生物活性磷、生物营养剂等[3-5]。生物活性氮(SuperNitro,简称SN)是普罗生物技术(上海)有限公司研发的一款液态氮源产品,它由多种氮形态构成,属于生理肥料的新产品,同时通过微碳技术植入有机酸小分子片段,主要作用是增强氮的输送能力,提高微生物对氮的吸收利用,再结合产品中的微量元素,达到营养均衡的效果。本文介绍了SN用于某制浆造纸废水处理系统的实践,对SN与传统氮源尿素的应用特点进行了全面分析和总结,实验研究了SN替代尿素的效果。
1.材料与方法
1.1试验药剂
生物活性氮(SN):密度为1.30mg/L,总氮含量约为30%,淡黄色液体,无毒无害。
尿素(Urea):密度为1.335mg/L,总氮含量约为46.7%,白色晶体,无毒无害。
1.2使用方法
进行试验的制浆企业产能100万t/a,商品浆产能40万t/a。制浆原料主要为木材、废纸和芦苇。废水处理系统的运行工艺流程为:废水→初沉池→冷却塔→选择池→厌氧池→好氧池→二沉池→深度处理(超效浅层气浮系统)→达标排放。该企业好氧系统长期稳定运行时,二沉池出水CODCr稳定在250mg/L以下。
废水处理系统进水CODCr保持在1250mg/L,BOD/COD为0.45,每天进水量为45000m3,进水总氮值为2mg/L,需要补充氮磷营养,经计算每天需要投加1012kg氮源,换算成尿素为2154kg,实际每天尿素用量为2100kg。
在废水处理不同时期,SN可发挥不同形态氮的协同效应,显著提高氮的利用率。为了确定SN能够高效地替代尿素,在产品开发阶段,以废水处理系统为研究对象,使用SN替代尿素,在废水中含有相同量的BOD时,尿素用量按照理论营养需求m(BOD)∶m(N)∶m(P)=100∶5∶1计算,经计算,最终确定本试验的SN总用量为原尿素用量的1/3(以尿素质量计)[6-7],即SN总用量为2100kg×1/3=700kg。
试验中使用SN时,采取逐步替代尿素的方法,即分三个阶段在选择池投加SN和尿素,最终使SN完全替代尿素。由于SN是液态,可直接泵入选择池;尿素则需要先在尿素罐中溶解,再泵入选择池。表1为三个阶段中SN和尿素的用量。
2.检测方法
SN作为一类新型氮源药剂,无毒无害,能够高效少量地替代传统氮源。目前评判SN的高效性和安全性主要为二沉池出水的氨氮浓度、二沉池出水CODCr、好氧池末端SV30(污泥沉降比)和生物相。
本试验取样地点为初沉池出口、选择池出口、好氧池出口、二沉池。水质检测项目、检测频次和检测方法见表2。
3.结果与讨论
3.1氨氮浓度
氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮,是微生物和水体生态植物等最易吸收利用的氮源。当水体中氨氮浓度过高时,会导致水体富营养化,对鱼类及某些水生生物有害,所以工业废水处理后需要达到一定的限值才能排放。该制浆造纸企业废水处理氨氮浓度排放标准依据GB/T3544—2008中现有企业排放限值为10mg/L,结合当地环保部门的规范,实际排放限值为8mg/L。图1为在使用SN期间废水处理生化系统进、出水的氨氮浓度。从图1可以看出,SN逐步替代尿素时,在不同替代阶段,其氨氮浓度呈现不同的规律。第一阶段,用233kg的SN替代中试前尿素用量中的1/3(即700kg尿素),其他氮源仍为尿素,在此阶段,选择池出水氨氮浓度比较低,平均为7.9mg/L,二沉池出水氨氮浓度波动较大。出现此类规律的原因主要为:①此阶段SN仅替代了中试前尿素用量中的1/3尿素,而SN中含有部分氨态氮,剩下的为其他形态的氮,再加上初沉池废水中的氨氮含量,导致选择池出水氨氮浓度较初沉池废水更高,随着SN逐步替代尿素,选择池出水氨氮也逐渐增大,最终趋于稳定。②SN为液体氮源,其中氮形态丰富,使用它替代尿素时,系统需要短暂的适应期,从而导致二沉池出水氨氮浓度波动较大。第二阶段,用466kg的SN替代中试前尿素用量中的2/3(即1400kg尿素),其他氮源仍为尿素,在此阶段,选择池出水氨氮浓度均值为8.9mg/L,二沉池出水氨氮浓度波动较小,呈下降的趋势,主要原因在于系统逐步适应了SN作为氮源。第三阶段,用700kgSN完全替代中试前尿素用量(即2100kg尿素),在此阶段,选择池出水氨氮浓度均值高达12.2mg/L,高氨氮含量的主要来源为SN中的氨态氮及初沉池废水中的氨态氮。但在此阶段,二沉池出水氨氮浓度平稳,均值仅为1.8mg/L,远远低于排放限值标准。其结果表明,SN能够安全地替代尿素,用量仅为原尿素用量的1/3时,二沉池出水达到排放标准。系统出水氨氮浓度稳定,即SN能够很好地被微生物利用。
3.2CODCr去除效率
CODCr是废水处理厂运行管理中一个重要的有机物污染指标。图2为使用SN中试期间,废水处理系统CODCr的去除情况。
从图2可以看出,该制浆企业废水处理系统初沉池CODCr在1100~1350mg/L,波动不大,说明该企业废水处理系统废水水质比较稳定,系统不会受到水力负荷冲击,在此情况下使用SN,避免了水力负荷冲击的影响。从二沉池出水CODCr曲线可以看出,使用SN逐步替代尿素的过程中,第一阶段和第二阶段系统CODCr稍有偏高,但总体趋于稳定。当系统外加氮源全部为生物活性氮时,废水处理系统CODCr完全低于250mg/L,期间最高为248mg/L,最低为220mg/L,平均值为238.1mg/L。就CODCr去除效果而言,第三阶段,即系统外加氮源全部为SN时,CODCr去除率为80.5%,高于第一阶段的79.9%和第二阶段的79.4%,说明外加SN作为废水处理系统的氮源,能够安全地替代尿素,且能够提高系统的处理效率。
3.3SV30
SV30是分析活性污泥沉降性最简便的方法,SV30值越小,污泥沉降性能越好,SV30值越大,沉降性能越差,以致出现活性污泥膨胀现象。废水处理系统中营养比例相当重要,一般细菌营养比例为m(BOD5)∶m(N)∶(P)=100∶5∶1。如果氮营养缺乏时,可能会产生膨胀现象。因为若缺氮,微生物新陈代谢过程中,不能充分利用碳源合成细胞物质,过量的碳源将被转化为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高黏性的污泥膨胀。当用SN替代尿素,用量仅为尿素用量的1/3时,从总氮含量上,SN总氮含量低于尿素总氮含量;但从吸收效率上看,SN更加容易被利用。
图3为逐步使用SN过程中,好氧池活性污泥的SV30变化情况。从图3中可以看出,在第一阶段,SV30与中试前的SV30(为33%)相当;当进行第二阶段时,SV30偏高,但没有出现活性污泥膨胀现象。出现SV30偏高的原因主要是活性污泥处于适应SN作为氮营养的一个过程,数据显示,第二阶段末期,SV30恢复为35%。当SN完全替代尿素时,SV30一直稳定在30%~35%,与只用尿素时相比,SV30没有发生太大的变化。总之,尿素和SN这两类氮营养物质,作为微生物营养时,都能够满足微生物的营养需求,只是SN能够高效少量地替代尿素。
3.4生物相
在使用SN逐步替代尿素期间,每天观察好氧池活性污泥的生物相,结果为:菌胶团结构较密实,没有发现太多从菌胶团中伸出的丝状菌;能够观察到活跃的原生动物和后生动物,其中数量较多的原生动物为钟虫、累枝虫和楯纤虫,数量较多的后生动物为轮虫。由生物相可以反映出生物处理系统运行正常,即说明SN能够安全稳定地替代尿素。
4.结论
选用生物活性氮(SN)部分替代尿素作为氮营养,应用于某制浆造纸企业的废水处理系统,分析和总结了SN与尿素的应用特点。
4.1SN作为一种新的液态氮源,完全能够替代传统氮源尿素。当SN用量仅为尿素用量的1/3(质量计)时,CODCr去除效果良好,二沉池出水氨氮浓度低于标准限值排放,SV30波动不大。
4.2SN能够高效地替代尿素,主要归结于SN中携带的有机酸小分子片段,这些有机酸小分子片段充当运输载体,运送氮源至细胞体内,促进氮源的高效吸收。
4.3SN为液态氮源,投加方便,可节省溶解尿素的电力成本,适合大量投加氮源的废水处理厂。
相关参考
污水处理生化系统活性污泥的生长、繁殖及其代谢活动都离不开营养。造纸废水是一种有机物含量高、缺少营养元素的废水,比如缺磷少氮,在实际运行中需要给处理系统添加适当的营养物质,否则会因微生物生长不良,极大地
污水处理生化系统活性污泥的生长、繁殖及其代谢活动都离不开营养。造纸废水是一种有机物含量高、缺少营养元素的废水,比如缺磷少氮,在实际运行中需要给处理系统添加适当的营养物质,否则会因微生物生长不良,极大地
污水处理生化系统活性污泥的生长、繁殖及其代谢活动都离不开营养。造纸废水是一种有机物含量高、缺少营养元素的废水,比如缺磷少氮,在实际运行中需要给处理系统添加适当的营养物质,否则会因微生物生长不良,极大地
基于废水处理系统受到上游改变纸品生产工艺的影响,造成废水处理系统中活性污泥活性不强或死亡等问题,在造纸废水处理生化段使用生物促生剂Bio-energizer(BE)、解毒剂Micatrol(MT)。结
基于废水处理系统受到上游改变纸品生产工艺的影响,造成废水处理系统中活性污泥活性不强或死亡等问题,在造纸废水处理生化段使用生物促生剂Bio-energizer(BE)、解毒剂Micatrol(MT)。结
基于废水处理系统受到上游改变纸品生产工艺的影响,造成废水处理系统中活性污泥活性不强或死亡等问题,在造纸废水处理生化段使用生物促生剂Bio-energizer(BE)、解毒剂Micatrol(MT)。结
造纸废水是我国主要的工业污染源之一。我国造纸业多采用草杆等草纤维作为造纸原料,相对木浆造纸废水来说,草浆造纸废水成分复杂,固体悬浮物高,可生化性差,属于较难处理的工业废水。若采用单一的好氧处理工艺很难
造纸废水是我国主要的工业污染源之一。我国造纸业多采用草杆等草纤维作为造纸原料,相对木浆造纸废水来说,草浆造纸废水成分复杂,固体悬浮物高,可生化性差,属于较难处理的工业废水。若采用单一的好氧处理工艺很难
造纸废水是我国主要的工业污染源之一。我国造纸业多采用草杆等草纤维作为造纸原料,相对木浆造纸废水来说,草浆造纸废水成分复杂,固体悬浮物高,可生化性差,属于较难处理的工业废水。若采用单一的好氧处理工艺很难