电催化分解水:解决多元金属氧化物相分离难题

Posted 氧化物

篇首语:君不见长松卧壑困风霜,时来屹立扶明堂。本文由小常识网(cha138.com)小编为大家整理,主要介绍了电催化分解水:解决多元金属氧化物相分离难题相关的知识,希望对你有一定的参考价值。

华东理工大学物理系青年教师张波在加拿大多伦多大学做博士后期间,在电催化分解水研究领域取得突破,相关成果近日发表于《科学》。该项研究由多伦多大学、华东理工大学、斯坦福大学、中科院高能物理研究所北京同步辐射中心、加拿大光源、美国布鲁克海文国家实验室等单位研究者合作完成。
电解水技术被认为是存储太阳能发电和风力发电等间歇式电能的关键技术,包括阴极析氢(HER)和阳极产氧(OER)两个半反应。其中产氧反应由于存在多种高能量的中间态,在无外加能量或无外加明显过电位的情况下,这一复杂的多步多电子反应将很难发生,即使采用高活性的贵金属催化剂,仍需很高的电压驱动电解水反应,且能源转换效率偏低。
研究人员发展了一种室温下溶胶—凝胶合成方法,突破了由于不同金属氧化物晶格不匹配而导致相分离的障碍,最终使催化剂材料保持了Fe、Co和W多金属氧化物/氢氧化物的原子尺度上的均相分散性,极大地提升了不同金属原子间的相互作用,最终实现了三大突破:产氧电催化剂性能的大幅提升,本征质量比活性和TOFs为目前已报道最优催化剂材料的3倍多,电能向化学能的转化效率由70%提高到80%以上。
业内专家认为,该工作发展的材料制备技术解决了多元金属氧化物相分离的技术难题,开辟了一条推动能源转换与存储领域快速发展的新通道。

相关参考

多相催化臭氧化水处理技术研究进展

在水处理研究与实践中,多相催化臭氧化技术作为一种新型高级氧化技术,受到高度关注。多相催化臭氧化的催化剂常采用金属氧化物、纳米金属氧化物和金属氢氧化物,其载体通常采用活性氧化铝、活性炭及蜂窝陶瓷等多孔材

多相催化臭氧化水处理技术研究进展

在水处理研究与实践中,多相催化臭氧化技术作为一种新型高级氧化技术,受到高度关注。多相催化臭氧化的催化剂常采用金属氧化物、纳米金属氧化物和金属氢氧化物,其载体通常采用活性氧化铝、活性炭及蜂窝陶瓷等多孔材

多相催化臭氧化水处理技术研究进展

在水处理研究与实践中,多相催化臭氧化技术作为一种新型高级氧化技术,受到高度关注。多相催化臭氧化的催化剂常采用金属氧化物、纳米金属氧化物和金属氢氧化物,其载体通常采用活性氧化铝、活性炭及蜂窝陶瓷等多孔材

高锰酸钾与二氧化锰水处理技术

高锰酸钾是一种常见的强氧化剂,常温下为紫黑色片状晶体,见光易分解。二氧化锰是一种两性过渡金属氧化物,是软锰矿的主要成分,具有氧化性、吸附性及催化性。二者在水处理中有着广泛应用。研究表明〔1〕,常规水处

高锰酸钾与二氧化锰水处理技术

高锰酸钾是一种常见的强氧化剂,常温下为紫黑色片状晶体,见光易分解。二氧化锰是一种两性过渡金属氧化物,是软锰矿的主要成分,具有氧化性、吸附性及催化性。二者在水处理中有着广泛应用。研究表明〔1〕,常规水处

高锰酸钾与二氧化锰水处理技术

高锰酸钾是一种常见的强氧化剂,常温下为紫黑色片状晶体,见光易分解。二氧化锰是一种两性过渡金属氧化物,是软锰矿的主要成分,具有氧化性、吸附性及催化性。二者在水处理中有着广泛应用。研究表明〔1〕,常规水处

纳米光催化氧化水处理技术进展

现代科学研究发现:当物质被“粉碎”到纳米级并制成纳米材料时将具有多种物理效应,不仅其光、电、热、磁等特性发生变化,而且具有辐射、吸收、催化、杀菌、吸附等许多新特性。在众多纳米科学技术中,纳米材料学、纳

纳米光催化氧化水处理技术进展

现代科学研究发现:当物质被“粉碎”到纳米级并制成纳米材料时将具有多种物理效应,不仅其光、电、热、磁等特性发生变化,而且具有辐射、吸收、催化、杀菌、吸附等许多新特性。在众多纳米科学技术中,纳米材料学、纳

纳米光催化氧化水处理技术进展

现代科学研究发现:当物质被“粉碎”到纳米级并制成纳米材料时将具有多种物理效应,不仅其光、电、热、磁等特性发生变化,而且具有辐射、吸收、催化、杀菌、吸附等许多新特性。在众多纳米科学技术中,纳米材料学、纳