土壤重金属铬污染分析及修复技术

Posted 土壤

篇首语:忍耐力较诸脑力,尤胜一筹。。本文由小常识网(cha138.com)小编为大家整理,主要介绍了土壤重金属铬污染分析及修复技术相关的知识,希望对你有一定的参考价值。

土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。但是随着工矿业的迅速发展,土壤重金属污染已日益严重,污染土壤中的重金属主要有汞、镉、铅、铜、铬、砷、镍、铁、锰、锌等,本文将以重金属铬污染为例来介绍土壤重金属污染的危害和修复技术。
1.土壤中重金属铬的来源
铬和铬盐作为重要的工业原料,主要用于化工、冶金、制革、电镀等行业,在国民经济的建设中起着重要的作用,这些工业部门分布点多而广,每天排出大量含铬废水和废气,因此污染环境的铬主要来自于含铬金属工业部门排放的“三废”,其中,大气和水是污染土壤的媒介,大气污染物通过降水、沉降、溶解进人土壤,水中的污染物通过排污、灌溉及地下水污染土壤。土壤中重金属铬的污染来源主要有以下几种:
1.1大气中重金属格的沉降
从工业区吹来的大气中含铬颗粒的沉降或被含铬污染物被雨水冲刷到土壤中是土壤中铬污染的主要来源之一。
1.2农药、化肥和塑料薄膜的使用
由于传统无机磷肥的使用,进而导致土壤重金属Cd、Cu、Cr、Zn、Ni的污染。此外,重金属元素是肥料中报道最多的污染物,我国磷肥中含有较多的有害重金属,肥料中Cr、Pb、As元素的含量较高,而土壤的环境容量(Cr、As)又较低,因而使用这些废料可能会引起土壤中Cr、As的较快积累,引起土壤中重金属铬的污染。
1.3污水灌溉
河水和灌溉用水中铬的沉淀被土壤吸附是土壤中铬的来源之一,含铬灌溉用水中的铬只有0.28%~15%为作为吸收,而85%~95%累积在土壤中,并肌肤全部集中于表土中。
1.4其他来源
污泥及城市垃圾中含有大量的有机质和氮、磷、钾等营养元素,但同时也含有大量的重金属,随着市政污泥进人农田,使得农田中的重金属的含量在不断提高;此外,金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等,都有可能被溶出,形成含重金属离子的废水,随着废水的排放或降雨而使其带人到水环境(如河流等)中或直接进人土壤,这些都可以直接或间接地造成土壤重金属污染。
2.壤重金属铬污染的危害
2.1对人体健康的危害
铬在土壤中主要有两种价态:Cr6+和Cr3+。两种价态的行为极为不同,前者活性低而毒性高,后者恰恰相反。Cr3+主要存在于土壤与沉积物中,Cr6+主要存在于水中,但易被Fe2+和有机物等还原。铬的毒性与其赋存形态有极大关系,环境中Cr(III)由于不易进人细胞,被认为是基本无毒的,因此铬的毒性及危害主要来自于Cr(VI),Cr(VI)化合物毒性比Cr(III)高10倍左右,水溶性Cr(VI)被列为对人体危害最大的八种化学物质之一,是美国EPA公认的129种重点污染物之一,同时也是国际公认的三种致癌金属物之一。工人在接触、吸人或摄人Cr(VI)或其化合物后,会出现以下毒性危害:如皮炎、过敏性和湿疹性皮肤反应、皮肤和粘膜溃疡、鼻中隔穿孔、过敏性哮喘、支气管癌、肺癌、胃肠炎、咽炎及肝、肾的损害。实验表明,六价铬化合物具有免疫毒性、神经毒性、生殖毒性、肾脏毒性及致癌性等。
2.2对植物的影响
铬在植物中的存在具有普遍性。微量元素Cr是植物生长发育所必需的,缺乏Cr元素会影响植物的正常发育,但体内积累过量又会引起毒害作用。通过对叶绿蛋白、叶绿素中铬的研究发现一定形式、一定数量的铬对植物生长可起到促进作用,能增强光合作用并提高产量;但过量的铬将引起花叶症、黄瓜癌、雍菜瘤、菠萝瘤等,此外,过量的铬会抑制水稻、玉米、油菜、棉花、萝卜等作物的生长。在铬污染条件下,小白菜的叶绿素值的下降趋势最为明显,如图1所示,随着土壤中铬浓度的升高,小白菜叶绿素的合成逐渐受抑制。
3.土壤中重金属铬污染修复技术
目前土壤中重金属铬的污染治理主要有两条思路:一是改变铬在土壤或沉积物中的存在形态,将Cr(Ⅵ)还原为毒性相对较小的Cr(Ⅲ),降低其在土壤环境中的生物可利用性;二是将铬从土壤或沉积物中清除。围绕这两条思路,国内外发展出一系列修复技术,如固定化/稳定化、淋洗法、洗土法、电动力学修复法、化学还原法、植物修复、微生物修复。
3.1固定化/稳定化
固定/稳定化是向铬污染的土壤中加人固化/稳定化剂(也可以辅以一定的还原剂,用于还原Cr(Ⅵ)),通过吸附、离子交换、络合以及氧化还原等作用等Cr(Ⅵ)转化为难溶、低毒性的物质,使其不再向周围环境迁移。如Poletini等将Cr(Ⅲ)含量为500mg/kg的土壤与水泥、Ca(OH)2混合,7d后Cr(Ⅲ)被有效固定。但该方法需将土壤挖掘出来,成本较高,处理效果有待进一步提高。
3.2淋洗法
一般污染土壤所含铬为水溶Cr(Ⅵ),是被土壤颗粒表面吸附的水溶性铬酸盐,或溶解在土壤(毛细管)孔隙水中的铬酸盐。当没有新的铬酸盐进人土壤时,随着雨水、地下水或人工回灌水的不断溶解淋洗,加上人为泵出处理,土壤中水溶性铬酸盐将逐渐洗脱离开土壤,最终使土壤中的Cr(Ⅵ)含量符合无害化要求,其中,泵出处理主要是将洗脱水抽送至地面装置,利用吸附法或氧化还原沉淀法去除洗脱水中的Cr(Ⅵ),净化后的水可继续回灌淋洗土壤。
虽然淋洗法已在去除土壤/沉积物中有机物的污染方面已有大规模的应用,但在重金属污染修复方面的应用仍有限,而且淋洗法仅适用于高渗透性土壤/沉积物,对含水率达到20%-30%以上的粘质土/壤土效果不佳。化学清洗法虽然费用较低,且操作人员不直接接触污染物,但仅适用于砂壤等渗透系数大的土壤,而且引人的清洗剂易造成二次污染。3.3化学还原法
化学还原法是利用还原剂如铁屑、硫酸亚铁或其他一些价格便宜、容易得到的化学还原剂将污染土壤/沉积物中的Cr(Ⅵ)还原成Cr(Ⅲ),形成难溶的化合物,从而降低铬在土壤环境中的迁移性和生物可利用性,包括原位和异位修复两种。常用的还原剂有硫酸亚铁(FeSO4)、多硫化钙CaS5、焦亚硫酸钠/亚硫酸氢钠(Na2S04/NaHSO3)、石灰等。
可渗透反应栅技术(Permeablereactivebarrier,PRB)是一类原位修复污染土壤/沉积物及地下水的新型技术,其中,胶态FeO-PRB技术可以有效地修复铬污染土壤和地下水。研究表明,在铬污染土壤地区的水流走向下方处挖井或横沟,然后注人胶态状零价铁粉形成FeO应栅,当Cr(Ⅵ)污染物顺着水流经过该反应栅时,Cr(Ⅵ)即被还原为沉淀态的Cr(Ⅲ)。在用PRB修复的重金属污染物中,以铬的研究最多,目前已有5个工程完成。
化学还原法成本较低,可实现工业化应用,但是当Cr(Ⅵ)存在于土壤/沉积物颗粒内部时,退难与还原剂接触并发生氧化颊原反应,因而要把这部分六价铬从土壤中浸出,就需要额外的超量还原剂来还原它。在这个过程中,还原剂有可能被冲走,也可能被其他物质氧化。另外,向土壤中添加的还原剂有可能造成二次污染。因此,土壤颗粒内部的六价铬的去除是化学还原法的难点。
3.4有机物还原法
铬酸盐是多种有机合成的氧化剂,许多有机物如柠檬酸、酒石酸、草酸是常用的Cr(Ⅵ)还原剂。动物排泄物和动植物遗骸常年累积形成的腐植土、泥炭,含有大量具有强还原性的多种有机酸,它能将土壤中的Cr(Ⅵ)还原为Cr(Ⅲ),且部分有机物还能与Cr(Ⅲ)形成稳定的赘合物,从而促进Cr(Ⅵ)的快速还原。
3.5电动修复法
电动力学修复法是在铬污染土壤两端加上低压直流电场,在各种电动效应(电渗析、电迁移和电泳等)的作用下将铬迁移到阴极室(Cr3+)或阳极室(Cr6+),最终在电极区富集,然后再进行回收处理。目前已有大量研究结果表明该技术可用于修复处理重金属铬、铅、锌等以及酚、甲苯等有机物,但工程应用实例不多。电动修复法主要适用于低渗透性的土壤、大颗粒和小颗粒土壤介质、多相不均匀土壤介质。
3.6植物修复
植物修复是通过绿色植物来固定、吸收、转移、转化和降解有机物,使之转变为对环境无害的物质或者对污染物加以回收利用的一种技术。广义的植物修复是指利用植物来净化空气,或者利用植物及其根际圈微生物体系来净化污水和治理的污染土壤。狭义的植物修复是指利用植物及其根际微生物体系治理污染的土壤。植物稳定、植物提取和植物挥发是重金属污染土壤植物修复的三种主要类型。植物修复的运行成本较低,回收和处理富集重金属的植物比较容易,因此近年来植物修复重金属污染土壤逐渐得到了重视和发展。
3.7微生物修复
微生物修复Cr(Ⅵ)污染土壤主要有吸附和还原两种方式,但利用微生物吸附法去除土壤中Cr(Ⅵ)的研究较少。微生物还原法即利用土壤中的土着微生物或向污染土壤中补充经驯化的高效微生物,通过微生物还原反应,将Cr(Ⅵ)还原为Cr(Ⅲ),从而达到修复铬污染土壤的目的。微生物修复的优点是不需要输人多的能量,不引人有毒试剂,不会破坏植物生长所需的土壤环境,而且可以使用没有生态风险的生物菌株,是一个很有潜力的技术。
4.结束语
综上所述,土壤受到重金属污染的原因复杂多样。因此,我们详细分析污染的来源,了解它的危害,不仅要采用多种修复方法对土壤重金属污染进行防治,更要不断探索,从实践中找到新的修复方法,确保我们生活土地的环境状况。

相关参考

土壤重金属镉污染的生物修复技术研究进展

自20世纪初发现镉(Cadmium,以下简称Cd)以来,Cd被广泛应用于电镀工业、化工业、电子业和核工业等领域,需求量也越来越大,相当数量的Cd通过废气、废水、废渣排人环境,造成污染。土壤中Cd超标一

土壤重金属镉污染的生物修复技术研究进展

自20世纪初发现镉(Cadmium,以下简称Cd)以来,Cd被广泛应用于电镀工业、化工业、电子业和核工业等领域,需求量也越来越大,相当数量的Cd通过废气、废水、废渣排人环境,造成污染。土壤中Cd超标一

土壤重金属镉污染的生物修复技术研究进展

自20世纪初发现镉(Cadmium,以下简称Cd)以来,Cd被广泛应用于电镀工业、化工业、电子业和核工业等领域,需求量也越来越大,相当数量的Cd通过废气、废水、废渣排人环境,造成污染。土壤中Cd超标一

土壤重金属污染修复技术分析

根据环保部和国土资源部2014年发布的《全国土壤污染状况调查公报》显示,我国土壤总的点位超标率为16.1%,其中镉、汞、砷、铜、铅、铬、锌、镍8种重金属污染物点位超标率分别为7.0%、1.6%、2.7

土壤重金属污染修复技术分析

根据环保部和国土资源部2014年发布的《全国土壤污染状况调查公报》显示,我国土壤总的点位超标率为16.1%,其中镉、汞、砷、铜、铅、铬、锌、镍8种重金属污染物点位超标率分别为7.0%、1.6%、2.7

土壤重金属污染修复技术分析

根据环保部和国土资源部2014年发布的《全国土壤污染状况调查公报》显示,我国土壤总的点位超标率为16.1%,其中镉、汞、砷、铜、铅、铬、锌、镍8种重金属污染物点位超标率分别为7.0%、1.6%、2.7

植物修复重金属土壤强化技术

随着工业的发展和农业生产的现代化,土壤的重金属污染日益严重重金属是一种难控制的污染物且不易生物降解,长期存在对农作物、农产品及地下水产生不良影响,并通过食物链危及人类健康。而处理土壤重金属的方法中,植

植物修复重金属土壤强化技术

随着工业的发展和农业生产的现代化,土壤的重金属污染日益严重重金属是一种难控制的污染物且不易生物降解,长期存在对农作物、农产品及地下水产生不良影响,并通过食物链危及人类健康。而处理土壤重金属的方法中,植

植物修复重金属土壤强化技术

随着工业的发展和农业生产的现代化,土壤的重金属污染日益严重重金属是一种难控制的污染物且不易生物降解,长期存在对农作物、农产品及地下水产生不良影响,并通过食物链危及人类健康。而处理土壤重金属的方法中,植