矿井煤泥水处理的新方法
Posted 水处理
篇首语:无限相信书籍的力量,是我的教育信仰的真谛之一。本文由小常识网(cha138.com)小编为大家整理,主要介绍了矿井煤泥水处理的新方法相关的知识,希望对你有一定的参考价值。
水在煤矿生产中,无论是用在防尘上,还是做动力或材料上,都是一种不可缺少的主要资源。然而,在生产过程中,流入井筒、巷道和固采工作面的地下水、地表水、大气降水及生产管路供水等所构成的矿井水,又常常给煤矿生产带来不同程度的危害。
在煤矿生产过程中,随着开采面积的不断扩大,采区涌水量也相应地增多。所谓采区涌水量,系指采区内自然涌水量和人为涌水量的总和。自然涌水量,指采区内地层涌水;人为涌水量,指防尘用水、动力用水、管路漏水、排水等。采区内自然涌水量较均匀,而人为涌水量则随机性很大,流速也随之变化,特别是局部定时排水等。这些水,经由回采顺槽巷道、运输石门等,使被抛洒在底板上的煤、岩颗粒随水流一同往低处运动,形成了采区煤泥水。煤泥水中的固体颗粒度大致在0—40mm之间。流动距离远,主要影响运输的多在0.5—10mm 之间。这些粒度的煤泥水集中在采区上下山斜巷水沟中,由于流速较高,是不沉淀的。而进入采区下部平巷,其水流减速后,则很快就沉淀。淤塞水沟、影响运输及文明生产。进入采区水仓中的大量煤泥沉淀后,严重占有水仓的有效容积,造成矿井抗灾能力不足,威协安全生产。
一、新安煤矿排水状况简介
双鸭山矿务局新安煤矿,是1984年投产的集中皮带斜井,设计能力150万怕,三个采区同时生产,设计矿井最大涌水量为1022m3/h。在一水平(一200)设有集中井底水仓,总容量为6838m。,布置了三个水仓,即:乙仓2692m。、丙仓2152m。、丁仓1994m。f甲仓未施工)。实际生产中,矿井正常涌水量为:762m。/h,按理论计算,水仓容量基本能符合《煤矿安全规程》的规定。
在生产过程中,由于矿井水中含有大量的煤泥颗粒,而在采区排水设计中,又较少考虑到煤泥的处理问题,以至使煤泥颗粒在采区下部车场、大巷等水沟中很快淤满,涌入巷道中,淤塞的煤泥影响了文明生产及运输。而进入采区水仓、井底水仓中的大量煤泥沉淀后,占有水仓有效容积。为保证安全生产、质量达标,在后期增设清水沟、清仓人员,补设泄水巷或补做大容量水仓等亡羊补牢的作法,都无法彻底改变面貌。如:我矿一200井底的三个水仓,实际生产中,只能是使用一个,备用一个,清理一个,即:对三个水仓需轮番清理。实际的有效水仓容量为 1—2个仓容,已不符合《煤矿安全规程》的规定,造成了矿井抗灾能力的不足。最为严重的是下山采区开采时,若对此重视不足或设计不当时,将直接影响采区的生产与安全。我矿一采下山区预计涌水量为294m3/h,设有甲、乙两个水仓,容量分别为1000m3和1358m。。实际生产中,采区涌水量在241~443m3/h之间,平均为:315m3/h,曾因采区涌水中煤泥含量高,几次出现正在清理的水仓未清完,而使用的水仓已淤满,造成的淹井事故,迫使采区补做了一个大容量的丙仓。这虽然避免了淹井事故,但巷道淤货、清仓占用水泵及绞车、工人清仓作业条件差等问题仍无法解决。
二、平巷流水沉淀池设计
平巷闸门挡水墙溢流流水沉淀池以下简称平巷沉淀池)的设计原理,与普通流水沉淀池一样,设计让煤泥水入池后,减速下沉而达到沉淀的目的。不同点只是沉淀池的底板标高与大巷或石门的底板标高相同,用闸门挡水墙来提高沉淀池内的水位,使水流经初期沉淀后,从沉淀池的挡水墙上溢流而出,汇集到平巷水沟,再流入水仓。
平巷沉淀池的设计参数确定及注意的问题。
流水沉淀池的沉淀原理,就是使池内的水流在此减速,使之呈层流状,固体颗粒在此状况下做抛物运动而沉淀。而减速的方法就是在沉淀池流水深度一定的前提下增大池宽。流水沉淀池一般能够沉淀大于或等于0.1mm 以上的固体颗粒。而若使0.1mm以上的颗粒沉淀,其水流速度必须小于100mm/s。根据采区煤泥颗粒绝大部分均在0.1 mm以上,且0.1 mm以下的颗粒不容易沉淀的情况,选择沉淀颗粒为0.1mm以上的煤泥固体颗粒。因此,池内平均水流速度预定为1 00mm/s。
1、沉淀池宽度的确定:
上述计算的长度为最小沉淀长度,也就是说,沉淀池小于此长度,就达不到沉淀的效果,但因沉淀的煤泥等不能马上就清理,需考虑沉淀物堆积长度及高度,即集泥容积,故,在计算出的沉淀长度基础上,根据清池周期,再加上积泥长度,即为沉淀池长度。
3、沉淀池积泥仓容积和积泥高度的确定:
4、沉淀池坡度:
平巷沉淀池清池方式为平巷池内人工清池或扒斗机清池,考虑运输方便及沉淀池有效容积利用,~般取池底坡度为逆水流3~5%。即有利于清池时泄水和推车。
5、平巷沉淀池高程控制:
为保证沉淀效果,入池水沟设计高程应与挡水墙门上溢流口标高有关,一般设计计算为:依据沉淀池宽度,流水深度,计算出沉淀池水力半径R,然后再计算出Y及谢基系数C,根据沉淀池内的水流速度V,即可计算出沉淀池内的水面坡度,再依据沉淀池长度,计算出池内水面高差,亦就确定了入池水沟标高,最后根据入池水沟标高及采区上下山坡度,就可确定出流水巷与采区上下山相交相对位置。
6 沉淀池挡水墙及闸门设置:
沉淀池挡水墙,应采用永久挡水墙(发碹砼或砖砌)中间安设闸门,其特点是密封性好,耐用。但清池前需控制池内存水高度,打开泄水孔、脱水,确认无水后,方能开门清池。
7 池内通风:
为保证清池时,能有新鲜风流,要求沉淀池挡水墙距顶板留有一定的高度,特别是在流水巷与沉淀池交点处,不应堵塞,以保证平巷与上山有风流通过。
8 清池:
在沉淀池内煤泥淤满后,应在沉淀池配水巷内将水流改至备用沉淀池,然后释放沉淀池内流动层水,即脱水。打开闸门,采用人工或扒斗机清池,矿车平巷运输。
三、经济效益分析
设置平巷流水沉淀池,不仅解决了煤泥淤塞巷道水沟,占用水仓有效容量等问题,而且更重要的是解除了水仓淤积过快,威胁安全生产的大难题(过去曾多次发生过大量煤泥入水仓后,清仓告急,险些淹井事故)。沉淀后的煤泥粉比其它方式沉淀的煤泥粉要干爽很多,基本呈松散状,便于清理装车、运输,绝不影响提升线路的文明整洁(含水的煤泥浆提升时易外溢洒货,需定专人清理绞车道),同时还避免了煤泥入煤仓后堵仓事故的发生。它能提高劳动效率,节省清池水泵和绞车,使人员作业环境变好,安全生产状况好。下面以新安煤矿中央下山区设置一350沉淀池为例,具体效益分析如下:
1、节省4DA8 X 6水泵一台,全套设备价值2.2万元,电费3.0万元/a:
2、节省JD一25绞车一台,全套设备价值3.2万元,电费O.6万元/a:
3、节省平巷、绞车道清煤粉人员各1人,提高了清池效率,减少绞车司机、水泵司机及设备维修人员等,共可节省人工费约2.5万元/a:
4、经沉淀后清出的松散煤粉,可在井下利用掘进翻煤滚笼直接进入煤仓,走皮带运煤系统。节省矿井绞车提升量。据2004年统计,从沉淀池内回收煤粉8890吨,有利地缓解了矿车运输的紧张状况(过去为防止煤泥堵煤仓,湿煤泥全部翻到矸石山上,到冬季,湿货冻车底,严重影响生产),现在煤粉入仓后,实现了资源的回收,减少损失6O万元/a。经上述分析,总计可节省设备投资5.4万元,节省费用支出3.1万元/a,减少资源损失60万元/a。
四、结论
平巷流水沉淀池,适用于布置在采区下部上(下)山与附近大巷或石门之间,其具有使用方便、经济效益显著、设计与施工简单、易于布置等特点,对于煤泥砂含量大的矿井,有很大的应用价值。 作者: 罗时献
相关参考
通过对煤泥水处理系统的探索和实践,使煤泥水处理能力大幅提升,降低了洗水浓度,为洗煤生产创造了良好的条件。云驾岭矿选煤厂是2004年11月建成投产的,年处理能力为90万t的矿井型无烟煤选煤厂,选煤工艺为
通过对煤泥水处理系统的探索和实践,使煤泥水处理能力大幅提升,降低了洗水浓度,为洗煤生产创造了良好的条件。云驾岭矿选煤厂是2004年11月建成投产的,年处理能力为90万t的矿井型无烟煤选煤厂,选煤工艺为
通过对煤泥水处理系统的探索和实践,使煤泥水处理能力大幅提升,降低了洗水浓度,为洗煤生产创造了良好的条件。云驾岭矿选煤厂是2004年11月建成投产的,年处理能力为90万t的矿井型无烟煤选煤厂,选煤工艺为
因煤泥水体系的复杂性和多样性,煤泥水处理方法、处理效果各不相同。常见的煤泥水处理方法主要有自然沉淀法、重力浓缩沉淀法和混凝沉淀法。煤泥水处理系统工艺流程分析选煤厂煤泥水处理系统工艺流程的改造与优化煤泥
因煤泥水体系的复杂性和多样性,煤泥水处理方法、处理效果各不相同。常见的煤泥水处理方法主要有自然沉淀法、重力浓缩沉淀法和混凝沉淀法。煤泥水处理系统工艺流程分析选煤厂煤泥水处理系统工艺流程的改造与优化煤泥
因煤泥水体系的复杂性和多样性,煤泥水处理方法、处理效果各不相同。常见的煤泥水处理方法主要有自然沉淀法、重力浓缩沉淀法和混凝沉淀法。煤泥水处理系统工艺流程分析选煤厂煤泥水处理系统工艺流程的改造与优化煤泥
选煤厂煤泥水处理系统的改造,是我国选煤厂进行技术改造最多的一个环节。为了减少新水的消耗,减少环境污染,提高选煤效率,选煤厂在煤泥水处理方面,通过对煤泥水处理系统的改造,已积累了很多宝贵的实践经验。文章
选煤厂煤泥水处理系统的改造,是我国选煤厂进行技术改造最多的一个环节。为了减少新水的消耗,减少环境污染,提高选煤效率,选煤厂在煤泥水处理方面,通过对煤泥水处理系统的改造,已积累了很多宝贵的实践经验。文章
选煤厂煤泥水处理系统的改造,是我国选煤厂进行技术改造最多的一个环节。为了减少新水的消耗,减少环境污染,提高选煤效率,选煤厂在煤泥水处理方面,通过对煤泥水处理系统的改造,已积累了很多宝贵的实践经验。文章