磷酸铵镁法与沸石吸附组合工艺的脱氮除磷实验研究

Posted 浓度

篇首语:研卷知古今;藏书教子孙。本文由小常识网(cha138.com)小编为大家整理,主要介绍了磷酸铵镁法与沸石吸附组合工艺的脱氮除磷实验研究相关的知识,希望对你有一定的参考价值。

摘要:以高浓度氮磷模拟废水为处理对象,通过静态实验研究了MAP法(磷酸铵镁法)与沸石吸附 组合工艺的脱氮除磷效果。以MAP法除磷脱氮后的出水作为沸石吸附过程的进水,最终出水的氮、磷去 除率可达86.69%和99.9%,且在MAP反应过程中采取较高的pH值和Mg 浓度有利于后期沸石对氮、磷的 吸附去除。

关键词:MAP法;天然沸石;吸附;去除氮磷;影响因素

1 引言

随着工农业生产规模迅速扩大,人口不断增长,人 们生产生活排放出含有大量氮、磷的生活污水和工业废 水,使水中营养物质富集,引起藻类及其他浮游生物迅 速繁殖、水体溶解氧量下降,鱼类或其他生物大量死 亡、水质恶化。要从根本上保证水质,需采取一定的水 源保护和水处理措施。

目前含氮磷废水的处理方法有很多,但均有不同 的缺点,尤其对于含高浓度氨氮和磷酸盐的废水,一般 的生化方法处理效果不够理想,而常规的化学沉淀法除 磷又会产生大量难以处理的污泥。20世纪60年代以来, 人们开始研究应用磷酸铵镁(Mgnesium Ammonium Phosphate,MAP)沉淀法去除和回收废水中的氮磷。 反应生成的磷酸铵镁(MgNH4PO 4·6H2O),是一种 很好的缓释化肥,国外已将其推向化肥市场。但此法仍 有不足之处,袁鹏等 的实验结果表明,当磷的去除率高 达90%以上时,氨氮的去除率仅为13%,达不到两者同时 高效去除的目的。

沸石是一种呈骨架状结构的多孔性、含水的铝酸盐 晶体,能够吸附和截留特定形状和大小的分子H ,对氨 氮的吸附有很好的效果。朱克银和曹亮用天然斜发沸石 处理含氨氮废水,氨氮平均去除率为85%;王浩等、 张美兰等也在这方面做了研究。

在本次试验中,拟利用MAP法与沸石吸附相结合的 组合工艺,达到同时去除氮磷的效果。但在MAP法与沸 石吸附串联反应的过程中,MAP法需要在pH值为9.5~ 11.0 的碱性条件下进行,并且要投加过量的镁盐才能保 证磷的高效去除,而溶液中较高的pH值和残留的M 必 将对后期的沸石吸附反应造成影响。本文将研究各种影 响因素对该组合工艺的影响,包括:pH值、沸石用量、 粒径、吸附反应时间及镁盐含量等因素。旨在研究该组 合工艺的可行性以及对氮磷的去除规律,为MAP法和沸 石吸附组合工艺的形式提供理论依据和技术支持。

2 实验部分

2.1 模拟废水的配置

称取0.2636g磷酸二氢钾(KH PO4)和2.0713g氯 化铵(NH C1)溶于1L去离子水中配制模拟废水。该模 拟废水中磷的质量浓度(以P计)为60.Omg/L,氨氮 的质量浓度(以N计)为542.Omg/L (模拟郑州某污水 厂污泥脱水上清液),氮与磷的摩尔比为20:1。实验 中所用药剂均为分析纯。

2.2 实验过程

2.2. 1 天然斜发沸石吸附氮磷

室温条件下在六连搅拌器上进行分组烧杯试验,转速定为150r/min。本试验全过程使用的均为浙江缙云 的天然斜发沸石。

配制1L模拟沸水,向6个l50ml的小烧杯中分别加 入100mL的模拟废水。第一组试验:选用180~200目 粒径的沸石,向每个小烧杯中加入6g,分别搅拌20~ 120min,在每个样品静沉2h后抽滤,测定出水中的氮 磷浓度,得出最佳反应时问。第二组试验:选用120~ 200目(粒径0.076~0.125ram)的沸石,分别将一定 量的沸石加入到5个盛有模拟废水的小烧杯中,搅拌一 定时间后(该时间由最佳反应时间确定),测出水中的 氮磷浓度,得出最佳反应粒径。第三组实验:选用最佳 粒径的沸石,分别向烧杯中加入6~16g,测出水中的氮 磷浓度,得出最佳投加量。

2.2. 2 MAP法与沸石吸附组合工艺去除氮磷

配制1 L模拟废水, 依照M g:P (摩尔比) = 1.5:1,pH=10.0的最佳反应条件 ,向盛有模拟废 水的烧杯中加入0.3272g硫酸镁(MgSO ),用NaOH溶 液将pH值调至10.0。在150r/min转速下搅拌20rain,在 此期间,保证pH值恒定在10.0。反应结束后,静沉, 抽滤,测出水的氮磷浓度。以MAP法的出水作为沸石 吸附法的进水,在最佳反应时间、最佳粒径、最佳用量 的条件下反应,测出最终出水的氮磷浓度,考察该组合 工艺的可行性。随后,改变MAP反应后出水的pH值和 MAP反应中镁盐的投加量,研究其对后期沸石吸附的 影响,测量最终出水的氮磷浓度,得出该组合工艺对氮 磷的去除规律。

2.3 分析方法

水样处理:实验中,测氮磷浓度前所取水样迅速用 0.45 m的滤膜过滤。

水样分析:按照中国环境科学出版社出版的第四版 ((水和废水监测分析方法》 进行。氨氮的测定采用钠 氏试剂分光光度法;正磷酸盐的测定采用钼锑抗分光光 度法。

3 结果与讨论

3.1 沸石吸附去除氦磷的实验结果

3.1.1 反应时间对氮磷去除效果的影响

不同的接触时间直接影响天然沸石对氮磷的去除 效率。从图1可以看出:沸石除氮磷是一个比较迅速 的过程,在最初反应的20rain内,氨氮的去除率达到 了61.77%,大部分的氨氮可以被沸石所吸附交换; 80min时,氨氮的去除率为70.65%,此后,随着时间的延 长,去除率基本不再变化。沸石对磷的吸附基本上随时间 变化不大,在最初的20min内,磷的去除率达到16.18%, 之后随着反应时间的延长,基本上不再变化。

图1反应时间对氦磷去除效果的影响

氨氮的去除在最初反应时比较迅速,Booker等 人的静态实验结果指出氨氮的吸附交换可以在反应开 始的lOmin内完成;Dimova等人的研究表明了类似 的结果:沸石去除氨氮是一个非常迅速的过程,不到 15min。这种氨氮去除随接触时间的变化规律基于以 下事实:最初,沸石结构中所有的吸附交换位是空的,溶液的氨氮浓度梯度高,所以吸附交换的速度非常快; 后来,由于吸附交换位逐渐被占据,溶液中氨氮浓度缓慢降低,去除率趋于不变。而沸石对磷的吸附能力远不及对氨氮的吸附能力。在实际操作中,为了提高工作效率,不能无限制的延长反应时间,根据图1可以确定最佳反应时间为80min。

3.1.2 沸石粒径对氮磷去除效果的影响

沸石粒径对氮磷去除效果的影响见图2。一般来说, 沸石用量越多、粒径越小,总的吸附容量就越大,净化 效果就越好。通过第二组实验,可以看出氮磷的去除率随着沸石粒径的减小而升高,当沸石粒径小到一定程度 时,去除率增幅不大。

图2 沸石细度对氦磷去除的影响

沸石的粒径越小,比表面积越大,单位重量沸石的 可交换活性点就越多,因而吸附去除率也就越高。而在 实际生产中,粒径太小不利于操作,故最佳细度确定为 180~200目。

3.1.3 沸石用量对氮磷去除效率的影响

不同的用量直接影响沸石对氮磷的吸附。沸石对氮 磷的去除效率随投加量的变化曲线如图3所示。由图3可 以看出,氮磷的去除率随着投加量的增加而迅速上升, 因为沸石投加量越大,总的吸附容量就越大,故去除率也就越高。当投加量大于12g/1OOmL模拟废水时,氮磷的去除率增幅不再明显。工程实际中,考虑到成本, 投加量不能无限增加,故最佳用量确定为12g/100mL模拟废水,同时可以查看中国污水处理工程网更多技术文档。

3.2 MAP法与沸石吸附组合工艺去除氮磷

3.2.1 组合工艺的处理效果

模拟废水的初始氮磷浓度分别为542.0mg/L、 60.0mg/L,按照最佳反应条件进行MAP反应后,测得 出水中的氮磷浓度。再将此反应的出水做为沸石吸附反 应的进水,测最终出水的氮磷浓度,数据如表1所示。 由表1可以看出,MAP法对磷有着很高的去除效率,但仍有大量的氨氮存在。经过沸石吸附后反应(反应时间80min、沸石细度1 80~200目、用量 12g/100mL模拟废水)后,测得出水中的氨氮的浓度大幅度降低,MAP法与沸石吸附组合工艺下去除氮磷的效果可观,基本能够达到同时去除两种营养元素的目的。

3.2.2 pH值对组合工艺去除氮磷的影响

pH值对后期沸石吸附反应是有影响的。取经过 MAP法反应后的水样,将pH值分别调至6.0、8.0、 10.0,投加一定量的沸石(12g/100mL模拟废水)进行 吸附反应,测得最终出水的氮磷含量如表2所示:

由表2数据可以看出,pH值对除磷的影响不大,因 为磷主要在前期的MAP法中已经基本去除;但pH值对 氨氮的去除还是有一定影响的,氨氮的去除率随着pH值 的升高有所增加。这主要是由于废水中NH 与NH 存在 着以下的化学平衡关系: 当溶液中pH较低时,废水中的H 离子浓度增加, 氨氮主要以NH 形式存在,有利于吸附作用的发生。

当溶液中H+浓度较高时,H+的直径为0.24nm,而NH4+为 0.286nm,故H+比NH4+易于进入沸石孔道内,与沸石上的金属阳离子发生交换,导致NH 不能被沸石充分吸附 交换,使得氨氮去除效果差。

当溶液中pH值升高时,氨氮主要以NH3·H2O存在,NH4+减少,虽然沸石吸附作用减弱,但逸出的氨气占主导,剩余的氨氮浓度降低,故去除率持续升高。 但这样易造成大气的二次污染,且碱的投加会造成处理 成本增加,故溶液的pH也不能过高。

3.2.3 Mg2+含量对组合工艺去除氮磷的影响

通过调整MAP法的镁磷摩尔比来改变水qUMg 的含 量,探讨Mg2+含量对后期沸石吸附的影响。三组平行实 验中分别将镁磷比设为l:1、1.5:1、2:1,得出的实验结果如表3所示:

由表3可以看出,Mg2+含量越高,磷的去除率略有增加;而对氨氮的去除率有明显的影响。经过MAP法后, 溶液Mg2+剩余量越多,沸石对氨氮的吸附去除效果越好。袁鹏等通过实验得出水溶液中的Mg 浓度的提高会 促进MAP结晶反应的进行。

这是由于磷酸铵镁形成的反应式如下:当水溶液qUMg 含量较高时,有利于反应的进行, 使MAP法的出水中氮磷浓度降低,减轻后续沸石吸附反应的负荷,最终得到除磷99.98%、除氨氮86.69%的良好效果。

4 结论

(1)单独利用沸石的离子交换与吸附去除污水中氮磷时的最佳时间为80min、最佳沸石细度为1 80~200目 (即粒径0.076~0.088mm)、用量为l2g/100mL模拟废水,对氨氮的去除率可达85.17%,但磷的去除率仅为26.75%。

(2)在组合工艺条件下,以最佳反应条件控制 MAP法的除磷效果,并以沸石吸附来提高对氨氮的去除率,可达到同时高效去除氮磷的目的。

(3)提高MAP法反应溶液的pH值和Mg2+的浓度, 既能促进MAP结晶反应,保证MAP法的除磷效果,又有 利于后期沸石对氨氮吸附反应的进行,可使氮、磷的去 除率分别达到80%和99%以上。来源:中国环保产业 作者: 吴彦霖 周荣敏

相关参考

改良型Pasveer氧化沟工艺脱氮除磷性能

摘要:针对传统Pasveer氧化沟内缺氧段碳源难以被反硝化菌充分利用的问题,采用内置缺氧区的改良型Pasveer氧化沟工艺,并进行中试规模实验研究,考察了不同内回流比条件下系统的脱氮除磷效果。研究结果

改良型Pasveer氧化沟工艺脱氮除磷性能

摘要:针对传统Pasveer氧化沟内缺氧段碳源难以被反硝化菌充分利用的问题,采用内置缺氧区的改良型Pasveer氧化沟工艺,并进行中试规模实验研究,考察了不同内回流比条件下系统的脱氮除磷效果。研究结果

改良型Pasveer氧化沟工艺脱氮除磷性能

摘要:针对传统Pasveer氧化沟内缺氧段碳源难以被反硝化菌充分利用的问题,采用内置缺氧区的改良型Pasveer氧化沟工艺,并进行中试规模实验研究,考察了不同内回流比条件下系统的脱氮除磷效果。研究结果

AB法工艺与脱氮除磷

AB法工艺对氮、磷的去除以A段的吸附去除为主。污水中的部分有机氮和磷以不溶解态存在,在A段生物吸附絮凝的作用下通过沉淀转移到固相中,同时生物同化也可以去除一部分以溶解态存在的氮和磷。传统的AB法工艺的

AB法工艺与脱氮除磷

AB法工艺对氮、磷的去除以A段的吸附去除为主。污水中的部分有机氮和磷以不溶解态存在,在A段生物吸附絮凝的作用下通过沉淀转移到固相中,同时生物同化也可以去除一部分以溶解态存在的氮和磷。传统的AB法工艺的

AB法工艺与脱氮除磷

AB法工艺对氮、磷的去除以A段的吸附去除为主。污水中的部分有机氮和磷以不溶解态存在,在A段生物吸附絮凝的作用下通过沉淀转移到固相中,同时生物同化也可以去除一部分以溶解态存在的氮和磷。传统的AB法工艺的

AB法工艺脱氮除磷的局限性

1、AB法工艺的脱氮效果AB法工艺的A段对污水中有机物的去除率一般高于对氨氮的去除率,这样,污水经A段处理以后,出水BOD5/N值降低,从而有望增大硝化菌在B段活性污泥中的比率和硝化速度。这对于系统硝

AB法工艺脱氮除磷的局限性

1、AB法工艺的脱氮效果AB法工艺的A段对污水中有机物的去除率一般高于对氨氮的去除率,这样,污水经A段处理以后,出水BOD5/N值降低,从而有望增大硝化菌在B段活性污泥中的比率和硝化速度。这对于系统硝

AB法工艺脱氮除磷的局限性

1、AB法工艺的脱氮效果AB法工艺的A段对污水中有机物的去除率一般高于对氨氮的去除率,这样,污水经A段处理以后,出水BOD5/N值降低,从而有望增大硝化菌在B段活性污泥中的比率和硝化速度。这对于系统硝