知识大全 数学建模论文包括哪些内容

Posted

篇首语:再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。本文由小常识网(cha138.com)小编为大家整理,主要介绍了知识大全 数学建模论文包括哪些内容相关的知识,希望对你有一定的参考价值。

数学建模论文包括哪些内容?

 全国大学生数学建模竞赛论文格式规范
 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。
 论文用白色A4纸单面列印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
 论文第一页为承诺书,具体内容和格式见本规范第二页。
 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
 论文从第三页开始编写页码,页码必须位于每页页尾中部,用阿拉伯数字从“1”开始连续编号。
 论文不能有页首,论文中不能有任何可能显示答题人身份的标志。
 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,列印时应尽量避免彩色列印。
 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他资讯,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。
 本规范的解释权属于全国大学生数学建模竞赛组委会。
[注]
赛区评阅前将论文第一页取下储存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下储存,同时在第二页建立“全国评阅编号”。
全国大学生数学建模竞赛组委会
2009年3月16日修订
数学建模论文一般结构
1摘要 (单独成页)
主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)
作用:了解档案重要性,对档案有大致认识
最佳页副:页面2/3。
2、问题重述和分析
3、问题假设
假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或引数应该在假设中明确约定。
作假设的两个原则:
① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。
② 贴近原则:贴近实际。
以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。
4、符号说明 (3.4可以合并)
5、模型建立与求解(重要程度 :60%以上)
6、模型检验(误差一般指均方误差)
7、结果分析 (6.7可以合并)
8、模型的进一步讨论 或 模型的推广
9、模型优缺点
10、参考档案
11、附件(结果千万不能放在附件中)
论文最佳页面数:15-21页
 论文结构一
题目
摘要
1.问题的重述
2.合理假设
3.符号约定
4.问题的分析
5.模型的建立与求解
6.模型的评价与推广
1、误差分析
2、模型的改进与推广
对XXXX切实可行的建议和意见:
1.……
2.……
……
7.参考文献
8.附录
 数学建模论文一般格式
 摘要
(主要理解、主要方法、主要结果、主要特点)
或(背景、目标、方法、结果、结论、建议)
 问题重述与分析
 问题假设
 符号说明
 模型建立与求解
 模型检验
 结果分析
 模型的进一步讨论
 模型优缺点
优秀论文要点:
1. 语言精练、有逻辑性、书写有条理
2. 文字与图形相结合,使内容直观、清晰、明了、容易理解
3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章
4. 对论文中所引用或用到的知识、软体要清晰地予以说明。
5. 在附录中附上论文所必须要的一些资料(图形或表格),并将论文中所编写的程式附上去
各步骤解释
摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)
作用:了解档案重要性,对档案有大致认识
最佳页副:页面2/3
问题重述与分析: 一向导、对题意的理解、
 建模的创造性
创造性是灵魂,文章要有闪光点。
好创意、好想法应当既在人意料之外,又在人
意料之中。
新颖性(独特性)与合理性皆备。
误区之一:数学用得越高深,越有创造性。
解决问题是第一原则,最合适的方法是最好的方法。
误区之二:创造性主要体现在建模与求解上。
创造性可以体现在建模的各个环节上,并且可以有多种表现形式。
误区之三:好创意来自于灵感,可遇不可求。
好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。
 表达的清晰性
好的文章 = 好的内容 + 好的表达
 替读者着想。该交代的要交代,如对题目的理解,关键指标或引数的引入,建模的思路,结果的分析等。
 写好摘要,包括:建模主要方法、主要结果,模型主要优点。
 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。
 适当采用图表,增加可读性。

数学建模论文撰写包括哪些内容:

模型准备:了解问题的实际背景,明确其实际意义,掌握物件的各种资讯。用数学语言来描述问题。
模型假设:根据实际物件的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变数之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)
模型求解:利用获取的资料资料,对模型的所有引数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。

这个网站有你要的答案 disio. ,还可以代写的。

数学建模论文包括哪些部分

作为一个高等数学教师,特别是一个常年辅导并带队参加全国大学生数学建模竞赛的指导老师,能深深地体会到数学建模竞赛论文与一般的数学论文不同,主要表现在它的综合性.数学建模竞赛论文紧密联络实际,针对问题的客观实际特征,有分析、整理综合的过程.它包含题意解读、选择合适的数学工具、建立合理的数学模型、使用恰当的计算方法、严格的论证和推演、明确的结论、结果的实际检验、恰如其分的评估和总结.还要有通俗简洁的语言.一篇好文章应具备以下特色:切合实际的分析,合理且令人信服的假设,选择合适的数学知识,严密的逻辑推理和论证,合理使用计算方法和软体并得出正确的解答,检验结果的正确性和实事求是的评估,既简单扼要又能说明问题的摘要.一、切合实际的分析和理解数学建模竞赛的题目都是客观的实际问题,内容无所不包.准确地了解题目的背景和要求是解题的第一步.这就要求我们对题目所涉及的各种因素进行分析.要分析有哪些因素对我们所讨论的问题有影响,哪些因素是主要因素,哪些因素是次要因素,哪些是起决定性作用的因素,哪些因素是微不足道的,以及各因素之间的主从关系.要充分和正确理解题目的要求,即题目要求我们要解决哪些问题.千万不能曲解题意,否则将前功尽弃,徒劳无功.要分析解决问题需要一些什么怎样的资料,这些资料题目是否已经给足,如果不够就要我们自己去收集.要分析哪些数学工具适合于问题的求解,哪些数学知识无助于问题的解决,或是不适合于本问题的解决.在分析的基础上,最好能够制定出解题的步骤和方法以及所需的工具(这里主要指数学知识、计算方法和软体).这样我们就可以有条不紊,从容不迫,按部就班地进行求解和写作.二、令人信服的合理假设数学模型的建立是在假设的基础上进行的.根据题目的要求,首先要收集有关的资料.这些资料必须来源可靠,具有一定的权威性.合理指符合客观实际,不能与已经被证明是正确的定理和规律相悖.假设是数学建模至关重要的一步,关系到建模的成败和模型的优劣.假设也是数学建模的一个难点,数学建模的假设就是要发挥每个人的想象力和创造力,提出适当的、合理的见解.如果这一步成功了,那么你的整个建模过程也就成功了一半.本题的合理的令人信服的假设我个人认为主要是:不同地区,不同学校,不同专业收费标准应该有区别;也就是说,你的模型是针对什么地区,哪类学校,什么专业的.所有的这些资料的来源应该都是可靠和具有权威性.模型的理据应该充分,有说服力.三、选择适合的数学知识数学建模中,同样的一道题可以有多种方法求解,因此往往可以用多种不同的数学知识.在可供选择的多种数学方法中,当然是所用数学知识越简单越好.因为我们的模型是给人看的,是为解决实际问题而建立的.只有模型(包括计算)越简单才能被的人看懂和应用,模型的应用价值也就更高.如果用得不当,不但不能解决问题,反而使问题复杂化,有时甚至得出荒谬的结果,这是我们需要慎重考虑和认真解决的.四、严密的逻辑推理和论证要按照不同地区、不同专业建立相应的模型.在分析论证过程中一定要有充分的依据,要说明资料的来源,且必须有充分的依据.不能凭借著自己的感觉去估算,要使人信服.五、注意语言的通俗和简洁数学建模的论文和其他科学论文一样,语言是给人的第一个印象,就好比人的衣着,要得体,既要朴素、整洁、好看,又不能太过华丽,更不能奇装异服,使人看起来很不舒服.这就要求我们平常要多训练,多看一些好文章;要善于学习别人的长处,有时候也可以模仿别人的做法.模仿不是抄袭.在前人已有的基础上,学习别人的思想方法,根据自身问题的客观实际,加以改进并结合自己的观点,这就是创新,这就是创造发明.六、好的摘要是第一道门坎为什么这样讲?因为现在参赛的队数越来越多,阅卷的专家人数有限,阅卷时先看摘要,如果看了摘要后给人的印象是这篇文章不值得一看,那就可能第一步就被淘汰,连门都进不了,哪里还有获奖的机会.摘要至少要包含思想方法、主要结论和优缺点.建议多看一些写得好的摘要,多动手,多训练.最好能达到如下的效果:就是看了你的文章的摘要后能使人产生有必要进一步细看文章内容的欲望.七、再谈谈文章的新意和创新1.创新创意从一点一滴做起文章要有不同于一般常人的新意和创新,这个可以从以下几点体现:(1)在模型的假设中体现;(2)在建模中体现;(3)在论证推导中体现;(4)在求解和计算中体现;(5)在资料的收集中体现

数学建模的论文附录中应该包括哪些内容呢?

附录
详细的结果,详细的资料表格,可在此列出。
但不要错,错的宁可不列。
主要结果资料,应在正文中列出,不怕重复。
检查答卷的主要三点,把三关:
n 模型的正确性、合理性、创新性
n 结果的正确性、合理性
n 文字表述清晰,分析精辟,摘要精彩

小学数学建模论文 内容写什么

踢球中的数学

初中数学建模论文和物理建模论文有哪些好素材

摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。
关键词: Q值法 公平席位
问题的重述:三个系部学生共200名,(甲系100.乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为103.63.34.
(1) 问20席该如何分配。
(2) 若增加21席又如何分配。
问题的分析:
一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:
某单位席位分配数 = 某单位总人数比例′总席位
如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为
系名 甲 乙 丙 总数
学生数 100 60 40 200
学生人数比例 100/200 60/200 40/200
席位分配 10 6 4 20
学生转系情况,各系学生人数及学生代表席位变为
系名 甲 乙 丙 总数
学生数 103 63 34 200
学生人数比例 103/200 63/200 34/200
按比例分配席位 10.3 6.3 3.4 20
按惯例席位分配 10 6 4 20
(1)20席应该甲系10席、乙系6席,丙系4席这样分配
二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有
系名 甲 乙 丙 总数
学生数 103 63 34 200
学生人数比例 103/200 63/200 34/200
按比例分配席位 10.815 6.615 3.57 21
按惯例席位分配 11 7 3 21
这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。
模型的建立:
假设由两个单位公平分配席位的情况,设
单位 人数 席位数 每席代表人数
单位A p1 n1
单位B p2 n2
要公平,应该有 = , 但这一般不成立。注意到等式不成立时有
若 > ,则说明单位A 吃亏(即对单位A不公平 )
若 < ,则说明单位B 吃亏 (即对单位B不公平 )
因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:
某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2
另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2
虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。
下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:
若 则称 为对A的相对不公平值, 记为
若 则称 为对B的相对不公平值 ,记为
由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。
确定分配方案:
使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有
1. > ,说明此一席给A后,对A还不公平;
2. < ,说明此一席给A后,对B还不公平,不公平值为
3. > ,说明此一席给B后,对A不公平,不公平值为
4. < ,不可能
上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有
则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2)<rA (n1,n2+1)进行简单处理,可以得出对应不等式
引入公式
于是知道增加的席位分配可以由Qk的最大值决定,且它可以推广到多个组的一般情况。用Qk的最大值决定席位分配的方法称为Q值法。
对多个组(m个组)的席位分配Q值法可以描述为:
1.先计算每个组的Q值:
Qk , k=1,2,…,m
2.求出其中最大的Q值Qi(若有多个最大值任选其中一个即可)
3.将席位分配给最大Q值Qi对应的第i组。
模型的求解:
先按应分配的整数部分分配,余下的部分按Q值分配。 本问题的整数名额共分配了19席,具体为:
甲 10.815 n1 =10
乙 6.615 n2 =6
丙 3.570 n3 =3
对第20席的分配,计算Q值
Q1=1032/(10′11) = 96.45 ; Q2=632/(6′7)= 94.5; Q3 =342/(3′4)=96.33
因为Q1最大,因此第20席应该给甲系; 对第21席的分配,计算Q值
Q1=1032/(11′12)=80.37 ; Q2 =632/(6′7)=94.5; Q3 =342/(3′4)=96.33
因为Q3最大,因此第21席应该给丙系
(2)最后的席位分配为:甲 11席 乙 6席 丙 4席
结论:20席应该甲系10席、乙系6席,丙系4席这样分配
若21席应该甲系11席、乙系6席,丙系4席

求优秀数学建模论文。

已传送 请查收

急求数学建模论文

给个邮箱,晚上给你发过去,我有一篇当时我们参加全国大学生数学竞赛的论文(草稿,草稿比较容易理解),当时是获得了全国二等奖。希望对你有用

相关参考

知识大全 我们数学老师让写个“数学小论文”,比如生活中的数学。各位高人说说该咋写,写论文是不是还有格式

我们数学老师让写个“数学小论文”,比如生活中的数学。各位高人说说该咋写,写论文是不是还有格式?多谢以下资料,自己整理动物数学气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas

知识大全 如何在小学数学教学中提高学生的课堂参与度数学论文

如何在小学数学教学中提高学生的课堂参与度数学论文现代教学理论认为:教学过程既是学生在教师指导下的认知过程,又是学生能力的发展过程。因此教师要彻底掘弃和摆脱传统的"填鸭式"教学,把主要经历放在为学生创设

知识大全 初中数学教学中怎样突出学生主体性论文

初中数学教学中怎样突出学生主体性论文学生学习目的明确,学习态度端正,是对提高学习积极性长时间起作用的因素。教师要利用各种机会结合实际,不断向学生进行学习的重要性和必要性的教育,使学生明确学习的社会意义

知识大全 求几篇人教版三年级下册的数学小论文,200-300字即可

求几篇人教版三年级下册的数学小论文,200-300字即可生活中的一些事如写一个计划早上几点起床,几点吃早饭,几点到几点学习,几点到几点休息,都可以数学作文不要求多少字数,只要你明白数学作文咋写,家进去

知识大全 小学数学教学论文 浅谈如何培养一年级学生主动有效地参与课堂

谁知道小学数学教学论文浅谈如何培养一年级学生主动有效地参与课堂浅谈如何培养一年级学生主动有效地参与课堂摘要:一年级学生刚踏入小学门槛,学习时间、方式和要求的骤变使他们处于不适应状态,从而不能养成良好的

知识大全 《如何在数学教学中培养学生的创新意识》怎么样改写才能使该论文题目更加新颖

《如何在数学教学中培养学生的创新意识》怎么样改写才能使该论文题目更加新颖创新意识---数学教学的灵魂如何在数学教学中培养学生创新意识教育是知识创新、传播和应用的主要基地,也是培养创新人才的摇篮。因此,

知识大全 小学阶段所涉及到的数学思想方法有哪些

小学阶段所涉及到的数学思想方法有哪些1.符号思想用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆

知识大全 有谁知道澳大利亚高中数学科目学习哪些内容呀

有谁知道澳大利亚高中数学科目学习哪些内容呀在下正在澳洲悉尼留学,希望能够帮助你解答疑难。首先,在下不清楚你要问的哪一个年级的高中数学,但就11,12(HSC)年级来看,数学分成general,2uni

知识大全 体育科学研究者能力结构的基本要素包括哪些

体育科学研究者能力结构的基本要素包括哪些【摘要】体育科学横跨自然科学与社会科学两大门类,具有极强的综合性特征,有其独特的研究对象和科学方法,体育科研论文的写作亦有自己的特点与要求。本文仅就体育科研论文

何谓中医药药物动力学?其研究内容有哪些?

以中医药(包括基础理论和具体药物)为研究对象,遵循药物代谢动力学基本原理(如隔室模型、生理模型、统计矩原理等),借助数学公式定量化研究的药物动力学称作中医药药物动力学(TTPK)。研究内容有:  1.