宇宙大爆炸后90亿~92亿年(恒星与行星)
Posted 恒星
篇首语:壮心未与年俱老,死去犹能作鬼雄。本文由小常识网(cha138.com)小编为大家整理,主要介绍了宇宙大爆炸后90亿~92亿年(恒星与行星)相关的知识,希望对你有一定的参考价值。
我们看到宇宙被第一代恒星所点亮,以及星系的形成。现在,当大爆炸过去90亿年时,宇宙看上去很像我们现在所见到的周围的情况,星系中充满了第二代恒星。现在到了仔细谈论恒星演化的时候了。我们已经对第一代恒星作了一些介绍,但对它们实际的形成过程一带而过,因为当时关注那些能够延展到整个宇宙间的效应。我们知道它们会在耀眼的闪光中结束自己短暂的生命,它们的超新星爆炸将重元素撒向四方。另外,还有一个极为重要的效应,爆炸形成的冲击波将激发新恒星在周围气体云中的形成。
很长时间里类星体都是最显著的天体。它们中心的黑洞吞噬着其所能够得到的巨量的气体和尘埃,释放出庞大的能量。当这些尘埃和气体消耗殆尽后,类星体暗淡下去,宇宙里剩下大量的“正常”星系。50亿年前,气体转化成恒星的速率加快了,宇宙变得更加明亮。后来,40亿到50亿年期间,燃料开始耗尽,垂死的恒星超过了正在诞生的恒星。同时,就在这一时段,在一个不起眼的旋涡星系中,我们的太阳开始形成。下面让我们仔细地探查一下恒星形成的过程。
相关参考
到这时恒星已经停止收缩,进入所谓主星序上的稳定的中年阶段。换句话说,核心的反应可以提供足够的能量抗衡引力向内的拉力,支撑恒星的外层。恒星被炽热气体的压力(或者推力,如果愿意这么叫的话)和核心产生的辐射
恒星在星系中的形成并不是均匀地发生的,周围物质的条件会对收缩产生影响。像我们自己的星系的旋臂就是一个很好的例子。对任何旋涡星系的光学照片一眼看去就能发现,旋臂上的恒星趋向于蓝色,而核球处的则呈黄色。以
围绕着原始太阳,剩余物质形成扁平旋转的圆盘。物质变成扁平形状的事实解释了为什么行星的轨道倾角如此地接近。相对于地球轨道,水星的倾角仅为7度,而所有其他大行星的倾角均小于4度。这也解释了为什么行星在轨道
最不可能的事就是我们的太阳系是独特的,但它确实是相当不平常。所以让我们再仔细地考察一下。除了行星和小行星大小的天体,还有被称作“脏雪球”的彗星。彗星真正实在的部分是它的核,由混有碎砾的冰雪构成。当彗星
根据最新的估计,可视宇宙——即我们可以看到的所有的东西:星系,恒星,行星等——仅占宇宙中能量的4%,另有23%是以暗物质的形式存在。而剩余的73%要归于所谓的“暗能量”。 直到宇宙史上的这个阶段——
我们到达了宇宙演化史上出现能够实际看到的分立天体的时间点。甚至在最早的恒星出现之前,物质收缩形成星系的过程就已经开始。哈勃太空望远镜的深空图像揭示出大爆炸后7亿年时的星系景象——它们看上去与在我们附近
年轻的星系中储备有大量的气体和尘埃,可以转变成恒星。这些星系的光芒主要发自明亮年轻的蓝色恒星,看上去和我们的星系——一个非常正常的旋涡星系很相似。在讨论其他星系之前,有必要详细地了解一下银河系。我们知
最初,地球处于熔融状态,这对生命而言实在是太热了。在大约5亿年的时间里,它逐渐冷却下来,形成了一个固体外壳。原初的大气中绝大部分都是氢气,但这种状况并不持久。能量稍高的原子很快就逃逸到宇宙空间中了,因
在这些星系的中心,甚至在很早的阶段就存在着数百万太阳质量的超大质量黑洞。就像我们前面提到过的,它们可能直接由坍缩的气体形成,也可能是大质量恒星的残余又吸附了大量的额外物质而形成的。无论如何,这一尺寸的
在我们太阳系中,行星绕日公转的速度随着它们到太阳距离的增加而减少,因为离太阳越远,引力越弱。顺理成章地,同样的规律也应该体现在旋转的星系上。靠近中心的星的运动应该比远离中心的星的运动快得多。然而天文学