宇宙大爆炸后90亿~92亿年(暗棕矮星)
Posted 行星
篇首语:一年好景君须记,最是橙黄橘绿时。本文由小常识网(cha138.com)小编为大家整理,主要介绍了宇宙大爆炸后90亿~92亿年(暗棕矮星)相关的知识,希望对你有一定的参考价值。
即便最冷的棕矮星也和一颗行星有本质的区别。一颗真正的恒星的质量必须至少为太阳的8%,即木星质量的75倍。低于此值则无法引发核反应,因为核心的温度不够高。由于棕矮星如此暗淡不易发现,因此直到1995年才作出了第一个证认。但现在已经确认了许多。大部分都与普通恒星相关联,可能因为这比孤立的矮星更容易被发现。现在已知最暗的棕矮星是Gliese570D,距离19光年。它的表面温度仅为480℃,只比日常用的炉子的温度略高。它环绕一个三合星系统运动,其直径大致与木星相当,但质量要大50倍。过重的质量使之难以被归类为行星;另一方面,它也无法被归于真正的恒星类,因为在大气中发现了锂的踪迹,而锂是无法在普通恒星的温度下存在的,它会被分解。矮星至少会发光,尽管很微弱。而行星则完全依赖于反射其主恒星的光芒。
有一族孤立的棕矮星不与任何恒星相关联,它们可能数量众多,但其起源尚存争议。这些孤立的天体也曾被称为“流浪行星”,经由引力作用被抛出了它们所形成于其中的系统,但似乎这种方式并不能产生所需的足够数量。
持续增长的太阳系外行星的清单,使我们愈发确信类地行星在宇宙星系中是很平常的,至少在单恒星附近是这样。对于双星系统,一颗小的行星难于维持很长时间不被抛出去,然而我们至少知道一个例外,就是在一个三合星系统中探测到了一颗大型行星在围绕着一颗类日恒星运动。
这些奇特而美妙的行星系统世界是多么地迷人,而我们显然对一种特定类型的太阳系——包含一颗小型岩质而湿润的行星的太阳系含有特别的兴趣。现在让我们把焦点集中到新近形成的我们自己的行星——地球——上。
相关参考
到这时恒星已经停止收缩,进入所谓主星序上的稳定的中年阶段。换句话说,核心的反应可以提供足够的能量抗衡引力向内的拉力,支撑恒星的外层。恒星被炽热气体的压力(或者推力,如果愿意这么叫的话)和核心产生的辐射
恒星在星系中的形成并不是均匀地发生的,周围物质的条件会对收缩产生影响。像我们自己的星系的旋臂就是一个很好的例子。对任何旋涡星系的光学照片一眼看去就能发现,旋臂上的恒星趋向于蓝色,而核球处的则呈黄色。以
最不可能的事就是我们的太阳系是独特的,但它确实是相当不平常。所以让我们再仔细地考察一下。除了行星和小行星大小的天体,还有被称作“脏雪球”的彗星。彗星真正实在的部分是它的核,由混有碎砾的冰雪构成。当彗星
围绕着原始太阳,剩余物质形成扁平旋转的圆盘。物质变成扁平形状的事实解释了为什么行星的轨道倾角如此地接近。相对于地球轨道,水星的倾角仅为7度,而所有其他大行星的倾角均小于4度。这也解释了为什么行星在轨道
我们到达了宇宙演化史上出现能够实际看到的分立天体的时间点。甚至在最早的恒星出现之前,物质收缩形成星系的过程就已经开始。哈勃太空望远镜的深空图像揭示出大爆炸后7亿年时的星系景象——它们看上去与在我们附近
暗能量存在的进一步证据来自意想不到的一个方面。通过观察几十万个星爱因斯坦在黑板前。1923年12月6日系的形状,天文学家能够测量出自光线从每个星系发出后宇宙的膨胀。这种方于荷兰莱顿。法被叫做宇宙剪切,
这是怎么回事?在整个物理学史上,有四种力被认为是足以解释物质之间的所有可能的相互作用:电磁力(造成异性电荷之间的吸引力)、强核力(将原子核约束在一起)、弱核力(造成放射性衰变)和引力(在整个宇宙范围内
在这些星系的中心,甚至在很早的阶段就存在着数百万太阳质量的超大质量黑洞。就像我们前面提到过的,它们可能直接由坍缩的气体形成,也可能是大质量恒星的残余又吸附了大量的额外物质而形成的。无论如何,这一尺寸的
根据最新的估计,可视宇宙——即我们可以看到的所有的东西:星系,恒星,行星等——仅占宇宙中能量的4%,另有23%是以暗物质的形式存在。而剩余的73%要归于所谓的“暗能量”。 直到宇宙史上的这个阶段——
年轻的星系中储备有大量的气体和尘埃,可以转变成恒星。这些星系的光芒主要发自明亮年轻的蓝色恒星,看上去和我们的星系——一个非常正常的旋涡星系很相似。在讨论其他星系之前,有必要详细地了解一下银河系。我们知