宇宙大爆炸后7亿~90亿年(宇宙剪切)

Posted 星系

篇首语:冲天香阵透长安,满城尽带黄金甲。本文由小常识网(cha138.com)小编为大家整理,主要介绍了宇宙大爆炸后7亿~90亿年(宇宙剪切)相关的知识,希望对你有一定的参考价值。

暗能量存在的进一步证据来自意想不到的一个方面。通过观察几十万个星爱因斯坦在黑板前。1923年12月6日系的形状,天文学家能够测量出自光线从每个星系发出后宇宙的膨胀。这种方于荷兰莱顿。法被叫做宇宙剪切,它依赖于光线路经质量时产生的弯曲。这种效应最壮观的例子是爱因斯坦环。来自遥远星系的光在从近邻系统的旁边经过时被严重扭曲,扩散成一个环形。近邻的系统位于中心。星系的图像也常常被扭曲和拉伸成弧状。除了这些极端的例子,我们看到的每个星系的图像都存在某种程度的畸变,畸变的大小反映出光线在到达观测者之前经过的质量总量。对大多数星系而言这种效应很微弱,只表现为星系在天空中位置上的小小偏移。这就存在一个问题,我们只能看到星系发生偏移后的景象,而要测量出途经的质量及计算出膨胀的大小,我们需要与一个从星系发出后未经任何畸变的光线作比较。对任何特定的星系,这都是不可能的。然而通过天文学家设计的对庞大数量星系的巡查,可以对很多星系作统计平均来提取出这类信息。其结论是明白无误的:光线从星系到我们之间所走过的路径需要用一个加速的膨胀来解释。

  不过这里又冒出一个漏洞。在发现宇宙加速膨胀之前,粒子物理学家们找到了一大堆理由来解释由他们的许多理论所预言的这种效应为什么在宇宙中没有表现出来。实际上我们处于这样一种境地,就是能够解释为什么要么根本没有互斥力,要么存在一种极强的排斥效应。不幸的是,我们观测到的只是一种非常弱的力(尽管在宇宙范围内累积起来这种效应非常显著),而且与预言差距甚大。实际上,天文观测结果与最好的理论模型之间的差别高达10120倍。这是有史以来在科学上理论和实验之间最大的误差。但是,这就是我们已知的最佳解释。

  而情况可能更为复杂。我们曾假设互斥力是不随时间变化的,这个假设只是出于不要把事情弄复杂的愿望,而无其他确实的理由。(要知道科学家们常常引用奥卡姆的剃刀原则:当其他方面都相同时,最简单的方案就是正确的方案。)有些宇宙学家则相信,造成加速的力的强度的确随时间变化。

  这些问题即将开始解决。今后20年中的进一步观测已经计划好。不过公平地说,在很大程度上我们还在黑暗中摸索。

相关参考

宇宙大爆炸后7亿~90亿年(第五种力)

这是怎么回事?在整个物理学史上,有四种力被认为是足以解释物质之间的所有可能的相互作用:电磁力(造成异性电荷之间的吸引力)、强核力(将原子核约束在一起)、弱核力(造成放射性衰变)和引力(在整个宇宙范围内

宇宙大爆炸后7亿~90亿年(为什么有暗能量)

根据最新的估计,可视宇宙——即我们可以看到的所有的东西:星系,恒星,行星等——仅占宇宙中能量的4%,另有23%是以暗物质的形式存在。而剩余的73%要归于所谓的“暗能量”。  直到宇宙史上的这个阶段——

宇宙大爆炸后7亿~90亿年(超大质量黑洞)

在这些星系的中心,甚至在很早的阶段就存在着数百万太阳质量的超大质量黑洞。就像我们前面提到过的,它们可能直接由坍缩的气体形成,也可能是大质量恒星的残余又吸附了大量的额外物质而形成的。无论如何,这一尺寸的

宇宙大爆炸后7亿~90亿年(银河系的产生)

年轻的星系中储备有大量的气体和尘埃,可以转变成恒星。这些星系的光芒主要发自明亮年轻的蓝色恒星,看上去和我们的星系——一个非常正常的旋涡星系很相似。在讨论其他星系之前,有必要详细地了解一下银河系。我们知

宇宙大爆炸后7亿~90亿年(神秘的暗物质)

在我们太阳系中,行星绕日公转的速度随着它们到太阳距离的增加而减少,因为离太阳越远,引力越弱。顺理成章地,同样的规律也应该体现在旋转的星系上。靠近中心的星的运动应该比远离中心的星的运动快得多。然而天文学

宇宙大爆炸后90亿~92亿年(太阳系的形成)

围绕着原始太阳,剩余物质形成扁平旋转的圆盘。物质变成扁平形状的事实解释了为什么行星的轨道倾角如此地接近。相对于地球轨道,水星的倾角仅为7度,而所有其他大行星的倾角均小于4度。这也解释了为什么行星在轨道

宇宙大爆炸后90亿~92亿年(恒星与行星)

我们看到宇宙被第一代恒星所点亮,以及星系的形成。现在,当大爆炸过去90亿年时,宇宙看上去很像我们现在所见到的周围的情况,星系中充满了第二代恒星。现在到了仔细谈论恒星演化的时候了。我们已经对第一代恒星作

宇宙大爆炸后90亿~92亿年(中年的恒星)

到这时恒星已经停止收缩,进入所谓主星序上的稳定的中年阶段。换句话说,核心的反应可以提供足够的能量抗衡引力向内的拉力,支撑恒星的外层。恒星被炽热气体的压力(或者推力,如果愿意这么叫的话)和核心产生的辐射

宇宙大爆炸后90亿~92亿年(暗棕矮星)

即便最冷的棕矮星也和一颗行星有本质的区别。一颗真正的恒星的质量必须至少为太阳的8%,即木星质量的75倍。低于此值则无法引发核反应,因为核心的温度不够高。由于棕矮星如此暗淡不易发现,因此直到1995年才

宇宙大爆炸后90亿~92亿年(恒星的诞生)

恒星在星系中的形成并不是均匀地发生的,周围物质的条件会对收缩产生影响。像我们自己的星系的旋臂就是一个很好的例子。对任何旋涡星系的光学照片一眼看去就能发现,旋臂上的恒星趋向于蓝色,而核球处的则呈黄色。以