宇宙大爆炸后7亿~90亿年(演化)

Posted 星系

篇首语:莫问天涯路几重,轻衫侧帽且从容。本文由小常识网(cha138.com)小编为大家整理,主要介绍了宇宙大爆炸后7亿~90亿年(演化)相关的知识,希望对你有一定的参考价值。

我们到达了宇宙演化史上出现能够实际看到的分立天体的时间点。甚至在最早的恒星出现之前,物质收缩形成星系的过程就已经开始。哈勃太空望远镜的深空图像揭示出大爆炸后7亿年时的星系景象——它们看上去与在我们附近的天体不同。许多都较小,而且有各式各样奇怪而美妙的形状,有些里面还有大质量黑洞。占主导地位的是神秘的类星体,现在知道这种能量源是非常活跃的星系核,其光度等效于几千个银河系。因为它们如此明亮,所以可以从很远的地方看到,也就是可以追溯到宇宙相当年轻的那些日子。

相关参考

宇宙大爆炸后7亿~90亿年(宇宙剪切)

暗能量存在的进一步证据来自意想不到的一个方面。通过观察几十万个星爱因斯坦在黑板前。1923年12月6日系的形状,天文学家能够测量出自光线从每个星系发出后宇宙的膨胀。这种方于荷兰莱顿。法被叫做宇宙剪切,

宇宙大爆炸后7亿~90亿年(第五种力)

这是怎么回事?在整个物理学史上,有四种力被认为是足以解释物质之间的所有可能的相互作用:电磁力(造成异性电荷之间的吸引力)、强核力(将原子核约束在一起)、弱核力(造成放射性衰变)和引力(在整个宇宙范围内

宇宙大爆炸后7亿~90亿年(超大质量黑洞)

在这些星系的中心,甚至在很早的阶段就存在着数百万太阳质量的超大质量黑洞。就像我们前面提到过的,它们可能直接由坍缩的气体形成,也可能是大质量恒星的残余又吸附了大量的额外物质而形成的。无论如何,这一尺寸的

宇宙大爆炸后7亿~90亿年(为什么有暗能量)

根据最新的估计,可视宇宙——即我们可以看到的所有的东西:星系,恒星,行星等——仅占宇宙中能量的4%,另有23%是以暗物质的形式存在。而剩余的73%要归于所谓的“暗能量”。  直到宇宙史上的这个阶段——

宇宙大爆炸后7亿~90亿年(银河系的产生)

年轻的星系中储备有大量的气体和尘埃,可以转变成恒星。这些星系的光芒主要发自明亮年轻的蓝色恒星,看上去和我们的星系——一个非常正常的旋涡星系很相似。在讨论其他星系之前,有必要详细地了解一下银河系。我们知

宇宙大爆炸后7亿~90亿年(神秘的暗物质)

在我们太阳系中,行星绕日公转的速度随着它们到太阳距离的增加而减少,因为离太阳越远,引力越弱。顺理成章地,同样的规律也应该体现在旋转的星系上。靠近中心的星的运动应该比远离中心的星的运动快得多。然而天文学

宇宙大爆炸后90亿~92亿年(太阳系的形成)

围绕着原始太阳,剩余物质形成扁平旋转的圆盘。物质变成扁平形状的事实解释了为什么行星的轨道倾角如此地接近。相对于地球轨道,水星的倾角仅为7度,而所有其他大行星的倾角均小于4度。这也解释了为什么行星在轨道

宇宙大爆炸后90亿~92亿年(中年的恒星)

到这时恒星已经停止收缩,进入所谓主星序上的稳定的中年阶段。换句话说,核心的反应可以提供足够的能量抗衡引力向内的拉力,支撑恒星的外层。恒星被炽热气体的压力(或者推力,如果愿意这么叫的话)和核心产生的辐射

宇宙大爆炸后90亿~92亿年(暗棕矮星)

即便最冷的棕矮星也和一颗行星有本质的区别。一颗真正的恒星的质量必须至少为太阳的8%,即木星质量的75倍。低于此值则无法引发核反应,因为核心的温度不够高。由于棕矮星如此暗淡不易发现,因此直到1995年才

宇宙大爆炸后90亿~92亿年(恒星的诞生)

恒星在星系中的形成并不是均匀地发生的,周围物质的条件会对收缩产生影响。像我们自己的星系的旋臂就是一个很好的例子。对任何旋涡星系的光学照片一眼看去就能发现,旋臂上的恒星趋向于蓝色,而核球处的则呈黄色。以