宇宙大爆炸后30万~7亿年(相对论——观测者的指南)

Posted 相对论

篇首语:当筵意气临九霄,星离雨散不终朝。本文由小常识网(cha138.com)小编为大家整理,主要介绍了宇宙大爆炸后30万~7亿年(相对论——观测者的指南)相关的知识,希望对你有一定的参考价值。

黑洞的物理学通常是用广义相对论的语言来描写的,所以值得花点时间做些了解。根据爱因斯坦的理论,两个拥有各自独立的参考系的观测者,当相对加速(或减速)时,它们的时标无法保持一致。换句话说,我觉得经过了10秒钟,而如果你正在加速离开我,那么会感到只过去了6秒钟。

  人们首先会想到“哪个人是正确的”,然后去检查时钟是不是被动了手脚。然而相对论明白无误地告诉您,两者都是对的,这里面没有人施展诡计。不同观测者的时间确实在以不同的速度流逝。不过一些常识性的原则被保留下来。例如两人观察到的事件发生的顺序是一致的。故而尽管可能其中一人看到A在B之前一分钟发生,而另一人看到A和B同时发生,任何人不可能看到B先于A发生。所以因果关系保持不变。但许多其他我们认为是理所当然的常识都不再成立了。

  为什么在日常生活中从未经历过这种类似悖论的事情?为什么我们从未见过时钟在以不同的速率走动?答案是,我们很幸运没有生活在黑洞附近。在没有极端的加速度,或接近光速的高速,或非常巨大的质量聚集在一起的条件下,这些改变微乎其微,牛顿的运动定律可以很好地得到符合。爱因斯坦并没有去证明牛顿错了,而是扩展了牛顿的思想,使之在更为极端的情况下依旧准确。

  黑洞除了对时间的流逝有如此作用外,相对论还告诉我们巨大的质量是如何影响周围的空间的。相对论难于理解的原因之一是其数学框架是四维形式的:三个我们所熟悉的空间维度加上一个时间维度,空间和时间不再独立存在。为相对论提供了大部分数学架构的闵可夫斯基曾这样说道:单独的空间和单独的时间消失得无影无踪,而这两者的复合体开始大放异彩。

  如何去想象一个四维的球体?我们都不能。但可以通过只考虑两个维度来对它的特性有所认识。把时空想象成一条四角拉紧的平展的床单。现在在中间放上一只圆球或其他重物,床单就会变形。就像理论告诉我们质量使得时空扭曲一样。穿越这个畸变时空的光线,其路径也会被扭曲。在一个大质量黑洞附近,这种效应会强大到使一个观测者在某个合适角度能同时看到周围星盘的正面和反面。

相关参考

宇宙大爆炸后30万~7亿年(有了光)

在暴胀这一灾变时期后的30万年里没有什么大的变化发生。支配宇宙演化的物理环境几乎保持不变。宇宙成为一个变动不那么剧烈的地方。随着温度的降低,质子和中子的速度也减慢了。但就像我们将要看到的那样,物质和辐

宇宙大爆炸后30万~7亿年(昏暗时代)

这种聚合是什么样子的?我们什么都看不到,因为正处在被第15任皇家天文学家马丁?里斯所称的“黑暗年代”。这个时代紧接着产生微波背景辐射的时刻,当时还没有任何恒星在宇宙中发光。  当然那里还充斥着在宇宙开

宇宙大爆炸后30万~7亿年(首批恒星的命运)

随着最早的恒星出现在宇宙中,它们的光芒终结了黑暗时代。这些恒星质量巨大,每个可能相当于150个太阳。伴随着巨大体积而来的不断增加的重力把它们的核心加热到非常高的温度。为恒星提供能量的核反应继而加速进行

宇宙大爆炸后30万~7亿年(虫洞,现实还是科幻小说)

对黑洞里面的情形,我们只能猜测。难道这个倒霉的恒星真把自己挤压成不存在的东西了吗?有人提出这样一种想法,就是黑洞使得时空畸变到出现一条连接宇宙间不同地点和时间的,甚至连接不同宇宙间的通道。这种叫做虫洞

宇宙大爆炸后30万~7亿年(黑洞,一个单向的旅程)

这种最初的电离相当不合逻辑地被称为“再电离时期”,它的产生还有另一个可能的原因。包括我们星系在内的几乎每一个星系,其中心都有一个大质量黑洞。黑洞是大质量恒星坍缩的产物,它的引力是如此之强,即便光也无法

宇宙大爆炸后7亿~90亿年(超大质量黑洞)

在这些星系的中心,甚至在很早的阶段就存在着数百万太阳质量的超大质量黑洞。就像我们前面提到过的,它们可能直接由坍缩的气体形成,也可能是大质量恒星的残余又吸附了大量的额外物质而形成的。无论如何,这一尺寸的

宇宙大爆炸后90亿~92亿年(太阳系的形成)

围绕着原始太阳,剩余物质形成扁平旋转的圆盘。物质变成扁平形状的事实解释了为什么行星的轨道倾角如此地接近。相对于地球轨道,水星的倾角仅为7度,而所有其他大行星的倾角均小于4度。这也解释了为什么行星在轨道

宇宙大爆炸后7亿~90亿年(演化)

我们到达了宇宙演化史上出现能够实际看到的分立天体的时间点。甚至在最早的恒星出现之前,物质收缩形成星系的过程就已经开始。哈勃太空望远镜的深空图像揭示出大爆炸后7亿年时的星系景象——它们看上去与在我们附近

宇宙大爆炸后7亿~90亿年(宇宙剪切)

暗能量存在的进一步证据来自意想不到的一个方面。通过观察几十万个星爱因斯坦在黑板前。1923年12月6日系的形状,天文学家能够测量出自光线从每个星系发出后宇宙的膨胀。这种方于荷兰莱顿。法被叫做宇宙剪切,

宇宙大爆炸后187亿年向前(结局)

宇宙的最终命运是什么?现在还很难在一系列可能性中给出选择,但是答案必定依赖于宇宙中两个博弈量的相对强度——引力和使宇宙加速的力(称为“宇宙常数”)。我们先来看看引力获胜时宇宙的未来如何。膨胀将趋于停止